CSE 421: Introduction to Algorithms

BFS

Shayan Oveis Gharan
Induction

Induction in 311:
Prove $1 + 2 + \cdots + n = n(n + 1)/2$

Induction in 421:
Prove all trees with n vertices have $n - 1$ edges
Wrong Induction on Trees

Start with a tree with vertices \{1, 2, ..., n – 1\} add vertex \(n\) as a leaf and connected to an arbitrary vertex.

Will you ever construct the following tree?
Let \(G = (V, E) \) be a graph with \(n = |V| \) vertices and \(m = |E| \) edges.

Claim: \(0 \leq m \leq \binom{n}{2} = \frac{n(n-1)}{2} = O(n^2) \)

Pf: Since every edge connects two distinct vertices (i.e., \(G \) has no loops) and no two edges connect the same pair of vertices (i.e., \(G \) has no multi-edges) it has at most \(\binom{n}{2} \) edges.
Sparse Graphs

A graph is called **sparse** if \(m \ll n^2 \) and it is called **dense** otherwise.

Sparse graphs are very common in practice
• Friendships in social network
• Planar graphs
• Web braph

Q: Which is a better running time \(O(n + m) \) vs \(O(n^2) \)?

A: \(O(n + m) = O(n^2) \), but \(O(n + m) \) is usually much better.
Storing Graphs (Internally in ALG)

Vertex set $V = \{v_1, \ldots, v_n\}$.

Adjacency Matrix: A

- For all, $i, j, A[i, j] = 1$ iff $(v_i, v_j) \in E$
- Storage: n^2 bits

Advantage:
- $O(1)$ test for presence or absence of edges

Disadvantage:
- Inefficient for sparse graphs both in storage and edge-access
Storing Graphs (Internally in ALG)

Adjacency List:
O(n+m) words

Advantage
• Compact for sparse
• Easily see all edges

Disadvantage
• No O(1) edge test
• More complex data structure

Typically assume you have access to adj matrix & adj list.
Storing Graphs (Internally in ALG)

Adjacency List:
O(n+m) words

Advantage
• Compact for sparse
• Easily see all edges

Disadvantage
• No O(1) edge test
• More complex data structure
Graph Traversal

Walk (via edges) from a fixed starting vertex s to all vertices reachable from s.

- Breadth First Search (BFS): Order nodes in successive layers based on distance from s
- Depth First Search (DFS): More natural approach for exploring a maze; many efficient algs build on it.

Applications:
- Finding Connected components of a graph
- Testing Bipartiteness
- Finding Aritculation points
Breadth First Search (BFS)

Completely \textit{explore} the vertices in order of their distance from \(s \).

Three states of vertices:
- Undiscovered
- Discovered
- Fully-explored

Naturally implemented using a queue
The queue will always have the list of Discovered vertices
BFS implementation

Global initialization: mark all vertices "undiscovered"

BFS(s)
 mark s "discovered"
 queue = { s }
 while queue not empty
 u = remove_first(queue)
 for each edge {u,x}
 if (x is undiscovered)
 mark x discovered
 append x on queue
 mark u fully-explored
BFS(1)

Queue: 1

green men discussed
BFS(1)

Queue: 2 3
BFS(1)

Queue: 3 4
BFS(1)

Queue: 5 6 7 8 9
BFS(1)

Queue: 7 8 9 10
BFS(1)

Queue:
Global initialization: mark all vertices "undiscovered"

BFS(s)
mark s discovered
queue = { s }
while queue not empty
 u = remove_first(queue)
 for each edge {u,x}
 if (x is undiscovered)
 mark x discovered
 append x on queue
mark u fully-explored

If we use adjacency list: $O(n) + O(\sum \deg(v)) = O(m + n)$
Properties of BFS

- **BFS(s)** visits a vertex v if and only if there is a path from s to v

- Edges into then-undiscovered vertices define a tree – the “Breadth First spanning tree” of G

- Level i in the tree are exactly all vertices v s.t., the shortest path (in G) from the root s to v is of length i

- **All** nontree edges join vertices on the same or adjacent levels of the tree
BFS Application: Shortest Paths

BFS Tree gives shortest paths from 1 to all vertices

All edges connect same or adjacent levels
BFS Application: Shortest Paths

BFS Tree gives shortest paths from 1 to all vertices

$\text{level of } v.$

All edges connect same or adjacent levels
Properties of BFS

Claim: All nontree edges join vertices on the same or adjacent levels of the tree

Pf: Consider an edge \{x,y\}
Say x is first discovered and it is added to level \(i\).
We show y will be at level \(i\) or \(i + 1\).

This is because when vertices incident to x are considered in the loop, if y is still undiscovered, it will be discovered and added to level \(i + 1\).
Properties of BFS

Lemma: All vertices at level \(i \) of BFS(s) have shortest path distance \(i \) to \(s \).

Claim: If \(L(v) = i \) then shortest path \(\leq i \)

Pf: Because there is a path of length \(i \) from \(s \) to \(v \) in the BFS tree

Claim: If shortest path \(= i \) then \(L(v) \leq i \)

Pf: If shortest path \(= i \), then say \(s = v_0, v_1, ..., v_i = v \) is the shortest path to \(v \).

By previous claim,

\[
L(v_1) \leq L(v_0) + 1 \\
L(v_2) \leq L(v_1) + 1 \\
\vdots \\
L(v_i) \leq L(v_{i-1}) + 1
\]

So, \(L(v_i) \leq i \).

This proves the lemma.