CSE 421: Introduction
to Algorithms

Induction - Graphs

Shayan Oveis Gharan

Undirected Graphs G=(V,E)

(A)
3 X \
&) w
4 @ Muilti edges
O

@"3 IsolatedNg
S mphe A

Graphs don't Live in Flat Land

Geometrical drawing is mentally convenient, but
mathematically irrelevant:

4 drawings of a single graph:

Directed Graphs

Terminology

* Degree of a vertex: # edges that touch that vertex

S C'D r\r\cM

deg(6)=3

J&(lo) =2

« Connected: Graph is connected if there is a path
between every two vertices

« Connected component: Maximal set of connected

vertices @ @@ —

10

Terminology (cont'd)

« Path: A sequence of distinct vertices
s.t. each vertex is connected
to the next vertex with an edge 2,6,52 net

Cn Pﬂ\l‘l\

« Cycle: Path of length > 2 that has
the same start and end

« Tree: A connected graph with no cycles

= N

Degree Sum

Claim: In any undirected graph, the number of edges is
equal to (1/2) Yyertex v deg(v)

Pf: Dvertex » deg(v) counts every edge of the graph exactly

twice; once from each end of the edge.
2
C/N

@!6

z deg(v) =2+2+1+1+3+2+3+2=16
vertex v

[E|=8

Odd Degree Vertices

Claim: In any undirected graph, the number of odd degree
vertices is even
Pf. In previous claim we showed sum of all vertex degrees

Is even. So there must be even number of odd degree
vertices, because sum of odd number of odd numbers is

Odd Stam og OM 'ﬂul’\&‘ og OOQA nm-&f.s
s oddd,

4 odd degree vertices
3,4,5,6

10

Degree 1 vertices

Claim: If G has no cycle, then it has a vertex of degree < 1
(So, every tree has a leaf)

Pf. (By contradiction)

Suppose every vertex has degree > 2.

Start from a vertex v, and follow a path, v,, ..., v; when we are at
v; we choose the next vertex to be different from v;_;. We can
do so because deg(v;) = 2.

The first time that we see a repeated vertex (v; = v;) we get a
cycle.
We always get a repeated vertex because G has finitely many

vertices

10

Trees and Induction

Claim: Show that every tree with n vertices has n-1 edges.

Pf. By induction.

Base Case: n=1, the tree has no edge

IH: Suppose every tree with n-1 vertices has n-2 edges

|S: Let T be a tree with n vertices.

So, T has a vertex v of degree 1.

Remove v and the neighboring edge, and let T be the new
graph.

We claim T’ is a tree: It has no cycle, and it must be
connected.

So, T' has n-2 edges and T has n-1 edges.

11

#tedges

Let G = (V,E) be a graph with n = |V| vertices and m = |E]|
edges.

Claim:0 <m < (}) = ”("2‘1) — 0(n?)

Pf. Since every edge connects two distinct vertices (i.e., G
has no loops)

and no two edges connect the same pair of vertices (i.e., G
has no multi-edges)

It has at most () edges.

12

Sparse Graphs

A graph is called sparse if m << n? and it is called dense
otherwise.

Sparse graphs are very common in practice
* Friendships in social network

* Planar graphs

 Web braph

Q: Which is a better running time 0(n + m) vs 0(n?)?
A: 0(n +m) = 0(n?), but 0(n + m) is usually much better.

13

Storing Graphs (Internally in ALG)

Vertex set V = {v4, ..., v, }.
Adjacency Matrix: A

» Forall, i,j,Ali,j]1=1iff (v,v;) EE
 Storage: n? bits

1 2 3 4

1[0 0 0 1

210 0 1 1

Advantage: 310 1 01
411 1 1 0

e 0(1) test for presence or absence of edges

Disadvantage:

« Inefficient for sparse graphs both in storage and edge-
access
14

Storing Graphs (Internally in ALG)

Adjacency List:
O(n+m) words

Advantage
« Compact for sparse
» Easily see all edges

Disadvantage
 No O(1) edge test
 More complex data structure

A kg

NNDI]W]] >

1 O N

NN

15

Storing Graphs (Internally in ALG)

Adjacency List:
O(n+m) words

Advantage
« Compact for sparse
» Easily see all edges

Disadvantage
 No O(1) edge test
 More complex data structure

-L:'_VM
2 =3 i4=]4 7
3 (=247

Aﬁ
m'i

NN

16

Graph Traversal

Walk (via edges) from a fixed starting vertex s to all vertices
reachable from s.

« Breadth First Search (BFS): Order nodes in successive
layers based on distance from s

* Depth First Search (DFS): More natural approach for
exploring a maze; many efficient algs build on it.

Applications:

* Finding Connected components of a graph
« Testing Bipartiteness

* Finding Aritculation points

17

Breadth First Search (BFS)

Completely explore the vertices in order of their distance
from s.

Three states of vertices:
« Undiscovered

* Discovered

* Fully-explored

Naturally implemented using a queue
The queue will always have the list of Discovered vertices

18

BFS implementation

Global initialization: mark all vertices "undiscovered"

BFS(s)
mark s "discovered"
queue ={s }
while queue not empty
u = remove_first(queue)
for each edge {u,x}
if (x is undiscovered)
mark x discovered
append x on queue
mark u fully-explored

19

