Claim, In any graph
$$G_{4}(x) \ge dy_{1}(v) = 2.1E1$$

Pf. Clifor ey graph $G_{4}(x)$ is $dy_{1}(v) = 21c$.
Base Case $k=0$. $\le dy_{1}(v) = 0 = 2.0 = 0$.
IH. For my graph with $k=1$ edges, claim halds.
IS. Supp G has Edges. Remove an edge $\{x,y\}$
and call the new graph G'.
By IH. $\ge d_{1}(v) = 2(k-1)$.
Wryth: $dy_{1}(v) = dy_{1}(x) + dy_{2}(y) = dy_{1}(y)$
 $=) \le dy_{1}(v) = 2 + \le dy_{1}(x) + dy_{2}(y) = dy_{2}(y)$
 $=) \le dy_{1}(v) = 2 + \le dy_{1}(x) = 2 + 2((c-1) = 2k).$
Claim, Let G be a graph with no cycles. Then G has a
write of dyree ≤ 1 .
Pf. Edg contradiction]
Supp $\forall v dy_{1}(v) \ge 2$. Good, G has a cycle.
 $\frac{(y)}{(y)} = \frac{(y)}{(y)} + \frac{(y)}{(y)} = \frac{(y)}{(y)} + \frac{(y)}{(y)} = \frac{(y)}{(y)} + \frac$