Claim. In any graph G, $\sum v \in V \deg_G(v) = 2 |V|$.

Pf. Cl. For any graph G with $1k$ edges, $\sum \deg_G(v) = 2k$.

Base Case $k=0$. $\sum \deg_G(v) = 0 = 2 \cdot 0 = 0$.

IH. For any graph with $k-1$ edges, claim holds.

IS. Suppose G has edges. Remove an edge $\{x,y\}$ and call the new graph G'.

By IH, $\sum_{v \in V} \deg_{G'}(v) = 2(k-1)$.

\[\forall v, x, y: \deg_G(v) = \deg_{G'}(v). \quad 1 + \deg_G(x) = \deg_{G'}(x) \quad 1 + \deg_G(y) = \deg_{G'}(y) \]

\[\Rightarrow \sum \deg_G(v) = 2 + \sum \deg_{G'}(v) = 2 + 2(k-1) = 2k. \]

Claim. Let G be a graph with no cycles. Then G has a vertex of degree ≤ 1.

Pf. (by contradiction)

Suppose $\forall v \deg(v) > 2$. Goal: G has a cycle.

\[v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \ldots \rightarrow v_i \]

If v_i is connected to v_1, $v_{i-2} \Rightarrow G$ has a cycle not possible.

By assumption, $\forall v \deg(v) \geq 2 \Rightarrow v_i$ has a neighbor other than v_{i-1}. Call that v_{i+1}.

G has finite size \Rightarrow this cannot continue indefinitely.

\Rightarrow either we get a cycle or a vertex of degree 1.
Claim. Show that any tree with n vertices must have $n-1$ edges.

IS. T with n vertices. Add a new vertex and connect it to one of vertices of T. T' has $n+1$ vertices and n edges. Incorrect! Not clear if you can construct all trees this way.

IS. Start with T with $n+1$ vertices. We know T has a leaf, say x. Remove x from T and call the remaining graph T'. T' has n vertices.

Claim T' is a tree:
- No cycle. We cannot create cycles by removing edges T has no cycle \Rightarrow T' has no cycle
- Connected: No path in T goes through x (since x is a leaf) T is con \Rightarrow T' connected.

IJT. T' is a tree \Rightarrow by IHT T' has $n-1$ edges \Rightarrow T has n edges.

IHT. Every tree with n vertices has $n-1$ edges.