/V\ s oL { M hs no ﬁMM"S+O‘LA P!

CSE 421

Course Overview /| Complexity

Course Contents

Administrativia Stuffs

- e P

HW1 is out! |
It is due Thursday April 11 at 5:00 i
Please submit to Canvas

Late Submission: Coordinate with me
How to submit?

« Submita file for each problem
. your submission before the deadline!!

» For hand written solutions, take a picture, turn it into pdf and submit

Guidelines:
* Always justify your answer
* You can collaborate, but you must write solutions on your own

* Your proofs should be clear, well-organized, and concise. Spell out
main idea.

« Sanity Check: Make sure you use assumptions of the problem

Extensions: Matching Residents to Hospitals

Men ~ hospitals, Women ~ med school residents.
« Variant 1: Some participants declare others as unacceptable.

« Variant 2: Unequal number of men and wome \ _
e.g. A resident not

interested in Cleveland

« Variant 3: Limited polygamy.

e.g. A hospital wants to hire 3 residents

Def: Matching S is if there is hospital h and resident r s.t.
* h and r are acceptable to each other; and
 either r is unmatched, or r prefers h to her assigned hospital; and

» either h does not have all its places filled, or h prefers r to at least
one of its assigned residents.

* Powerful ideas learned in course.

Lessons Learned

Isolate underlying structure of problem.

Create useful and efficient algorithms.

« Potentially deep social ramifications. [legal disclaimer]

Historically, men propose to women. Why not vice versa?
Men: propose early and often.
Men: be more honest.

Women: ask out the guys.
Theory can be socially enriching and fun!

“The Match’:

Each medical school graduate
submits a ranked list of hospital
where he wants to do a residency

Each hospital submits a ranked
list of newly minted doctors

A computer runs stable matching
algorithm (extended to handle polygamy)

Until recently, it was hospital-optimal.

History

1900

 ldea of hospital having residents (then called “interns”)
1900-1940s

» Intense competition among hospitals

« Each hospital makes offers independently

* Process degenerates into a race; hospitals advancing date at
which they finalize binding contracts

1944

« Medical schools stop releasing info about students
before a fixed date

1945-1949

« Hospitals started putting time limits on offers
« Time limits down to 12 hours; lots of unhappy people

“The Match”

1950
* NICI run a centralized algorithm for a trial run
« The pairing was not stable, Oops!!

1952

« The algorithm was modified and adopted. It was called
the Match.

* The first matching produced in April 1952

ARl

Five Representative Problems

Interval Scheduling
Weighted Interval Scheduling

Bipartite Matching
Independent Set Problem
Competitive Facility Location

Interval Scheduling

Input: Given a set of jobs with start/finish times

Goal: Find the subset of jobs that can
be run on a single machine.

a

Time

Interval Scheduling

Input: Given a set of jobs with start/finish times

Goal: Find the subset of jobs that can be
run on a single machine.

23

;12;

20

13

20

1

16 , Time

Bipartite Matching

Input: Given a bipartite graph

Goal: Find the matching

11

Independent Set

Input: A graph

Goal: Find the
N

Subset of nodes that no two joined by an edge

12

Competitive Facility Location

Input: Graph with weight on each node

Game: Two competing players alternate in selecting nodes. Not
allowed to select a node if any of its neighbors have been

selected.

Goal. Does player 2 have a strategy which guarantees a total
value of V what player 1 does?

1 1 5 15 5 1 5 1 15 10
@ e o @ o o o o o
4l 2

Second player can guarantee 20, but not 25.

13

Five Representative Problems

Variation of a theme: Independent set Problem

1. Interval Scheduling
nlogn algorithm

2. Weighted Interval Scheduling

nlogn algorithm

3. Bipartite Matching
k

n based algorithm

4. Independent Set Problem: NP-complete

5. Competitive Facility Location: PSPACE-complete

14

Defining Efficient Algorithms

15

Defining Efficiency

“Runs fast on typical real problem instances”

Pros:
e Sensible,
 Bottom-line oriented

Cons:
* Moving target (diff computers, programming languages)
« Highly subjective (how fast is “fast™? What is “typical?)

16

Measuring Efficiency

Time = # of instructions executed in a programming
language

only simple operations (+,*,-,=,if,call,...)
each operation takes one time step
each memory access takes one time step

no fancy stuff (add these two matrices, copy this long
string,...) built in; write it/charge for it as above

17

Time Complexity

Problem: An algorithm can have different running time on
different inputs

Solution: The complexity of an algorithm associates a
number T(N), the “time” the algorithm takes on problem

size N.

On which inputs of size N?

Mathematically,

T is a function that maps positive integers giving
problem size to positive integers giving number of

steps

18

Time Complexity (N)

Worst Case Complexity: # steps algorithm takes on
any input of size N

This Couse
Average Case Complexity: # steps algorithm takes on
inputs of size N
Best Case Complexity: # steps algorithm takes on any

input of size N

19

Why Worst-case Inputs?

Analysis is typically easier

Useful in real-time applications
e.g., space shuttle, nuclear reactors)

Worst-case instances kick in when an algorithm is run as
a module many times
e.g., geometry or linear algebra library

Useful when running competitions
e.g., airline prices

Unlike average-case no debate about the right definition

20

Time Complexity on Worst Case Inputs

Time

Problem size N

21

O-Notation

Given two positive functions f and g

« f(N) is O(g(N)) iff there is a constant ¢>0 s.t.,
f(N) is eventually always < ¢ g(N)

« f(N) is 2(g(N)) iff there is a constant >0 s.t.,
f(N) is > € g(N) for infinitely

« f(N) is ©(g(N)) iff there are constants c,, ¢,>0 so that
eventually always c,g(N) < f(N) < c,g(N)

22

Asymptotic Bounds for common fns

Polynomials:
ap+a;n+ -+ agn?is 0(n?)

Logarithms:
log,n = O0(logy, n) for all constants a,b > 0
lg, 0= 4
> Bt

Logarithms: log grows slower than every polynomial
For all x > 0, logn = 0(n%) 0.000% |
By = o(n)

1.01 oo 0
) 0 |0 002 - OCQ,)

nlogn =0(n

23

Efficient = Polynomial Time

An algorithm runs in polynomial time if T(n)=0(n9) for some
constant d independent of the input size n.

Why Polynomial time?

If problem size grows by at most a constar'g factor then
so does the running time (M) =n

« E.g. T(2N) < c(2N)* < 2Kk(cNK)
 Polynomial-time is exactly the set of running times that
have this property

Typical running times are small degree polynomials,

mostly less than N3, at worst N, not N0

0 100

2 2
309 op— 24

Why it matters?

* #atoms in universe < 2249 84 240
- : 54 2"'.2

« Life of the universe < 2°* seconds

« A CPU does < 23° operations a second

If every atom is a CPU, a 2™ time ALG cannot solve n=350 if we start at
Big-Bang.

n nlog, n n? I 1.5" i n!

n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec

n =30 <lsec <1lsec <1sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1sec 11 min 36 years very long

n =100 <lsec <1lsec <1sec 1sec 12,892 years 107 years very long

n = 1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Y

not only get very big, but do so abruptly, which likely yields errati
performance on small instances 25

Why “Polynomial™?

Point is not that n2%% js a practical bound, or that the
differences among n and 2n and n? are negligible.

Rather, simple theoretical tools may not easily capture

such differences, whereas exponentials are qualitatively
different from polynomials, so more amenable to theoretical

analysis.

« “My problem is in P” is a starting point for a more
detailed analysis

« “My problem is not in P” may suggest that you need to
shift to a more tractable variant

26

