Def of stable match.

M is stable if M has no most unstable point

# **CSE 421**

### **Course Overview / Complexity**

#### **Course Contents**



### Administrativia Stuffs

HW1 is out!
It is due Thursday April 11 at 5:00
Please submit to Canvas



- Submit a separate file for each problem
- Double check your submission before the deadline!!
- For hand written solutions, take a picture, turn it into pdf and submit

#### Guidelines:

- Always justify your answer
- You can collaborate, but you must write solutions on your own
- Your proofs should be clear, well-organized, and concise. Spell out main idea.
- Sanity Check: Make sure you use assumptions of the problem



### Extensions: Matching Residents to Hospitals

Men  $\approx$  hospitals, Women  $\approx$  med school residents.

- Variant 1: Some participants declare others as unacceptable.
- Variant 2: Unequal number of men and women.

e.g. A resident not interested in Cleveland

Variant 3: Limited polygamy.

e.g. A hospital wants to hire 3 residents

Def: Matching S is unstable if there is hospital h and resident r s.t.

- h and r are acceptable to each other; and
- either **r** is unmatched, or **r** prefers **h** to her assigned hospital; and
- either h does not have all its places filled, or h prefers r to at least one of its assigned residents.

### **Lessons Learned**

Powerful ideas learned in course.



- Isolate underlying structure of problem.
- Create useful and efficient algorithms.
- Potentially deep social ramifications. [legal disclaimer]
  - Historically, men propose to women. Why not vice versa?
  - Men: propose early and often.
  - Men: be more honest.
  - Women: ask out the guys.
  - Theory can be socially enriching and fun!

# "The Match": Doctors and Medical Residences

- Each medical school graduate submits a ranked list of hospital where he wants to do a residency
- Each hospital submits a ranked list of newly minted doctors
- A computer runs stable matching algorithm (extended to handle polygamy)
- Until recently, it was hospital-optimal.



# History

#### 1900

Idea of hospital having residents (then called "interns")

#### 1900-1940s

- Intense competition among hospitals
  - Each hospital makes offers independently
  - Process degenerates into a race; hospitals advancing date at which they finalize binding contracts

#### 1944

 Medical schools stop releasing info about students before a fixed date

#### 1945-1949

- Hospitals started putting time limits on offers
  - Time limits down to 12 hours; lots of unhappy people

### "The Match"

#### 1950

- NICI run a centralized algorithm for a trial run
- The pairing was not stable, Oops!!

#### 1952

- The algorithm was modified and adopted. It was called the Match.
- The first matching produced in April 1952

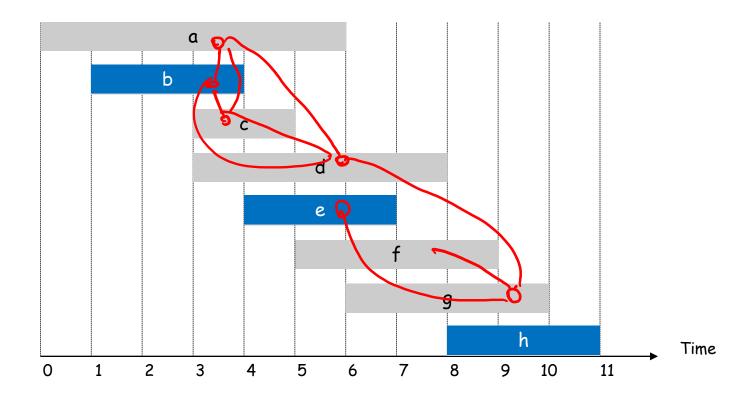
### Five Representative Problems

- 1. Interval Scheduling
- 2. Weighted Interval Scheduling
- 3. Bipartite Matching
- 4. Independent Set Problem
- 5. Competitive Facility Location

# Interval Scheduling

Input: Given a set of jobs with start/finish times

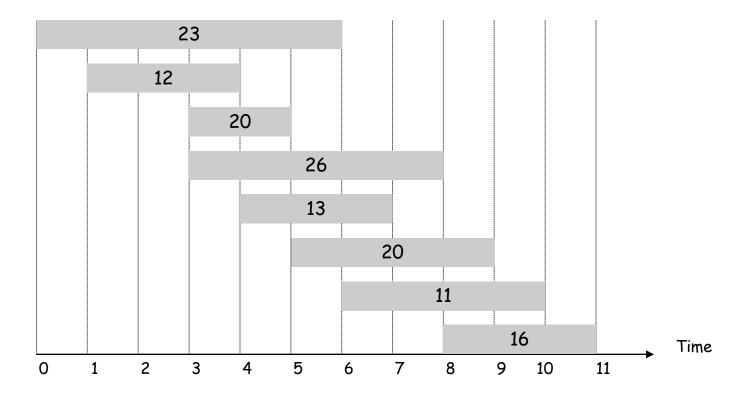
Goal: Find the maximum cardinality subset of jobs that can be run on a single machine.



### Interval Scheduling

Input: Given a set of jobs with start/finish times

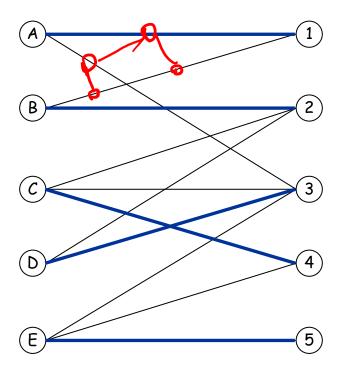
Goal: Find the maximum weight subset of jobs that can be run on a single machine.



# **Bipartite Matching**

Input: Given a bipartite graph

Goal: Find the maximum cardinality matching

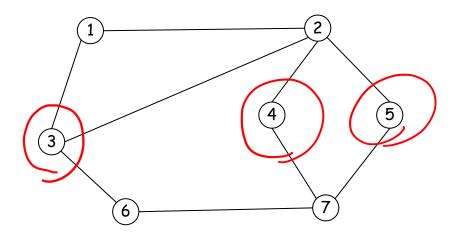


### Independent Set

Input: A graph

Goal: Find the maximum independent\_set

Subset of nodes that no two joined by an edge

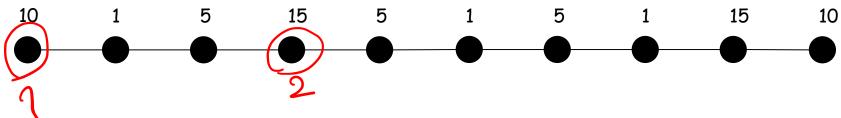


### Competitive Facility Location

Input: Graph with weight on each node

Game: Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors have been selected.

Goal. Does player 2 have a strategy which guarantees a total value of *V* no matter what player 1 does?



Second player can guarantee 20, but not 25.

# Five Representative Problems

### Variation of a theme: Independent set Problem

- 1. Interval Scheduling  $n \log n$  greedy algorithm
- 2. Weighted Interval Scheduling  $n \log n$  dynamic programming algorithm
- 3. Bipartite Matching  $n^k$  maximum flow based algorithm
- 4. Independent Set Problem: NP-complete
- 5. Competitive Facility Location: PSPACE-complete

### **Defining Efficient Algorithms**

# Defining Efficiency

"Runs fast on typical real problem instances"

#### Pros:

- Sensible,
- Bottom-line oriented

### Cons:

- Moving target (diff computers, programming languages)
- Highly subjective (how fast is "fast"? What is "typical"?)

# Measuring Efficiency

Time ≈ # of instructions executed in a simple programming language

```
only simple operations (+,*,-,=,if,call,...)
each operation takes one time step
each memory access takes one time step
no fancy stuff (add these two matrices, copy this long
string,...) built in; write it/charge for it as above
```

# Time Complexity

Problem: An algorithm can have different running time on different inputs

Solution: The complexity of an algorithm associates a number **T(N)**, the "time" the algorithm takes on problem size **N**.

On which inputs of size N?

### Mathematically,

T is a function that maps positive integers giving problem size to positive integers giving number of steps

# Time Complexity (N)

Worst Case Complexity: max # steps algorithm takes on any input of size N

This Couse

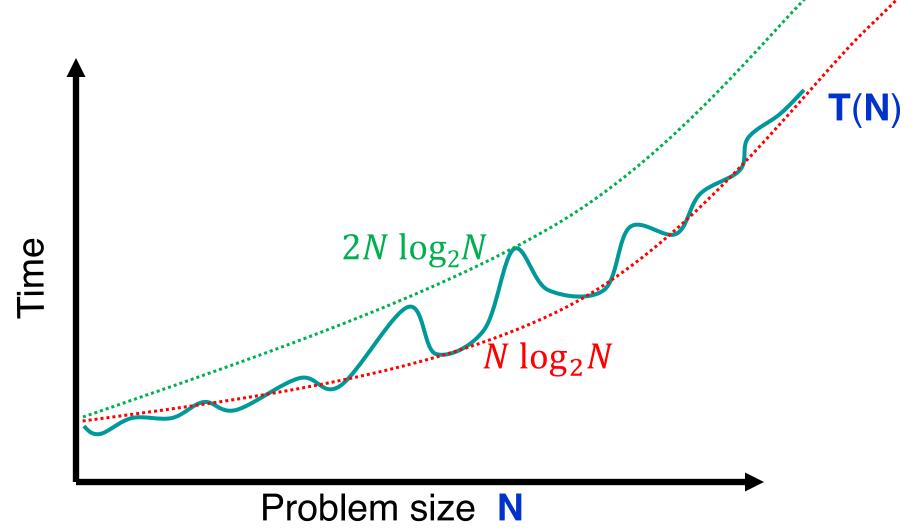
Average Case Complexity: avg # steps algorithm takes on inputs of size N

Best Case Complexity: min # steps algorithm takes on any input of size N

# Why Worst-case Inputs?

- Analysis is typically easier
- Useful in real-time applications
   e.g., space shuttle, nuclear reactors)
- Worst-case instances kick in when an algorithm is run as a module many times
  - e.g., geometry or linear algebra library
- Useful when running competitions e.g., airline prices
- Unlike average-case no debate about the right definition

### Time Complexity on Worst Case Inputs



### **O-Notation**

Given two positive functions f and g

f(N) is O(g(N)) iff there is a constant c>0 s.t.,
 f(N) is eventually always ≤ c g(N)

f(N) is Ω(g(N)) iff there is a constant ε>0 s.t.,
 f(N) is ≥ ε g(N) for infinitely

f(N) is ⊕(g(N)) iff there are constants c<sub>1</sub>, c<sub>2</sub>>0 so that eventually always c<sub>1</sub>g(N) ≤ f(N) ≤ c<sub>2</sub>g(N)

### Asymptotic Bounds for common fns

### Polynomials:

$$a_0 + a_1 n + \dots + a_d n^d$$
 is  $O(n^d)$ 

### Logarithms:

$$\log_a n = O(\log_b n)$$
 for all constants  $a, b > 0$ 

Logarithms: log grows slower than every polynomial

For all 
$$x > 0$$
,  $\log n = O(n^k)$ 

$$\lim_{n \to \infty} O(n^{n-k})$$
•  $n \log n = O(n^{1.01})$ 

# Efficient = Polynomial Time

An algorithm runs in polynomial time if T(n)=O(n<sup>d</sup>) for some constant d independent of the input size n.

### Why Polynomial time?

If problem size grows by at most a constant factor then so does the running time  $\tau(N) = n^{k}$ 

- E.g.  $T(2N) \le c(2N)^k \le 2^k (cN^k)$
- Polynomial-time is exactly the set of running times that have this property

Typical running times are small degree polynomials, mostly less than N<sup>3</sup>, at worst N<sup>6</sup>, not N<sup>100</sup>

# Why it matters?

#atoms in universe < 2<sup>240</sup>

284 240

Life of the universe < 2<sup>54</sup> seconds

• A CPU does  $< 2^{30}$  operations a second If every atom is a CPU, a  $2^n$  time ALG cannot solve n=350 if we start at Big-Bang.

|               | п       | $n \log_2 n$ | $n^2$   | $n^3$        | 1.5 <sup>n</sup> | 2 <sup>n</sup>         | n!                     |
|---------------|---------|--------------|---------|--------------|------------------|------------------------|------------------------|
| n = 10        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | < 1 sec          | < 1 sec                | 4 sec                  |
| n = 30        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | < 1 sec          | 18 min                 | 10 <sup>25</sup> years |
| n = 50        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | 11 min           | 36 years               | very long              |
| n = 100       | < 1 sec | < 1 sec      | < 1 sec | 1 sec        | 12,892 years     | 10 <sup>17</sup> years | very long              |
| n = 1,000     | < 1 sec | < 1 sec      | 1 sec   | 18 min       | very long        | very long              | very long              |
| n = 10,000    | < 1 sec | < 1 sec      | 2 min   | 12 days      | very long        | very long              | very long              |
| n = 100,000   | < 1 sec | 2 sec        | 3 hours | 32 years     | very long        | very long              | very long              |
| n = 1,000,000 | 1 sec   | 20 sec       | 12 days | 31,710 years | very long        | very long              | very long              |

not only get very big, but do so *abruptly*, which likely yields errati performance on small instances 25

# Why "Polynomial"?

Point is not that n<sup>2000</sup> is a practical bound, or that the differences among n and 2n and n<sup>2</sup> are negligible.

Rather, simple theoretical tools may not easily capture such differences, whereas exponentials are qualitatively different from polynomials, so more amenable to theoretical analysis.

- "My problem is in P" is a starting point for a more detailed analysis
- "My problem is not in P" may suggest that you need to shift to a more tractable variant