Sample final is out.
Final review session on Sunday at 3:00.
Final is Monday at 2:30-4:20 at Gates 01.

CSE 421

Reductions / P vs NP

Shayan Oveis Gharan
Reductions & NP-Completeness
Polynomial Time Reduction

Def $A \leq_P B$: if there is an *algorithm* for problem A using a ‘black box’ (subroutine) that solve problem B s.t.,
- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B

So,

B is Polynomial time solvable \implies A is Polynomial time solvable

Conversely,

No efficient Algorithm for A \implies No efficient Algorithm for B

In words, B is as hard as A (it can be even harder)
\leq^1_p Reductions

A restricted form of polynomial-time reduction often called Karp or many-to-one reduction

$A \leq^1_p B$: if and only if there is an algorithm for A given a black box solving B that on input x

- Runs for polynomial time computing an input $f(x)$ of B
- Makes one call to the black box for B for input $f(x)$
- Returns the answer that the black box gave

We say that the function $f(.)$ is the reduction
Example 1: Indep Set \leq_p Clique

Indep Set: Given $G=(V,E)$ and an integer k, is there $S \subseteq V$ s.t. $|S| \geq k$ and no two vertices in S are joined by an edge?

Clique: Given a graph $G=(V,E)$ and an integer k, is there $S \subseteq V$, $|\cup| \geq k$ s.t., every pair of vertices in S is joined by an edge?

Claim: Indep Set \leq_p Clique

Pf: Given $G = (V, E)$ an instance of indep Set. Construct a new graph $G' = (V, E')$ where \(\{u, v\} \in E' \) if and only if \(\{u, v\} \notin E \).

\[
\begin{array}{c}
\text{S is an independ set in G} \\
\end{array}
\quad \iff \quad
\begin{array}{c}
\text{S is an Clique in G'} \\
\end{array}
\]
Example 2: Vertex Cover \(\leq_p \) Indep Set

Vertex Cover: Given a graph \(G=(V,E) \) and an integer \(k \), is there a vertex cover of size at most \(k \)?

Claim: For any graph \(G = (V, E) \), \(S \) is an independent set iff \(V - S \) is a vertex cover

Pf:

\(\Rightarrow \) Let \(S \) be a independent set of \(G \). Then, \(S \) has at most one endpoint of every edge of \(G \). So, \(V - S \) has at least one endpoint of every edge of \(G \). So, \(V - S \) is a vertex cover.

\(\Leftarrow \) Suppose \(V - S \) is a vertex cover. Then, there is no edge between vertices of \(S \) (otherwise, \(V - S \) is not a vertex cover). So, \(S \) is an independent set.
Example 3: Vertex Cover \leq_p Set Cover

Set Cover: Given a set U, collection of subsets S_1, \ldots, S_m of U and an integer k, is there a collection of k sets that contain all elements of U?

Claim: Vertex Cover \leq_p Set Cover

Pf:
Given $(G = (V, E), k)$ of vertex cover we construct a set cover input $f(G, k)$

- $U = E$
- For each $v \in V$ we create a set S_v of all edges connected to v

This clearly is a polynomial-time reduction

So, we need to prove it gives the right answer
Example 3: Vertex Cover \leq_p Set Cover

Claim: Vertex Cover \leq_p Set Cover
Pf: Given $(G = (V, E), k)$ of vertex cover we construct a set cover input $f(G, k)$

- $U = E$
- For each $v \in V$ we create a set S_v of all edges connected to v

Vertex-Cover (G, k) is yes \Rightarrow Set-Cover $f(G, k)$ is yes

If a set $W \subseteq V$ covers all edges, just choose S_v for all $v \in W$, it covers all U.

Set-Cover $f(G, k)$ is yes \Rightarrow Vertex-Cover (G, k) is yes

If $(S_{v_1}, ..., S_{v_k})$ covers all U, the set $\{v_1, ..., v_k\}$ covers all edges of G.
≤^m_p Reductions

Sometimes we solve problem A by reducing it to many copies of problem B

A ≤^m_p B: if and only if there is an algorithm for A given a black box solving B that on input x

- Runs for polynomial time computing inputs f_1(x), ..., f_m(x) of B where m is a polynomial on length of x.
- Makes m calls to the black box for B for each input f_i(x)
- Returns yes if one of calls to B answers yes and no otherwise.

We say that the function f(.) is the reduction