Claim: G has indep set of size $\geq k \iff G'$ has a clique of size $\geq k$.

\Rightarrow

G has indep set S s.t. $|S| \geq k$.
So S is a clique in G'
So G' has a clique of size $\geq k$.

\Leftarrow

G' has a clique S s.t. $|S| \geq k$.
So S is an indep set in C.

Proof of correctness:

Bipars max match \leq_P General graph max matching

max ind on trees \leq_P max ind set on graphs
So G has an independent set of size $7k$.

* S is a vertex cover if for every edge e 1 endpoint is in S.
* S is an independent set if for any edge 1 endpoint in S.

* e.g.

$S_a = \{1, 4\}$ $S_b = \{1, 2, 3\}$ $S_c = \{2, 5\}$ $S_d = \{3, 4, 5\}$.

S_b and S_d cover $\{1, 5\}$.

G

$U \subseteq E \rightarrow \text{yes}$
Correctness: Suppose Vertex Cov \((G, k) = \text{yes}\). \(S\) is a vertex cover of \(G\) of size \(\leq k\).

For all \(v \in S\), add \(S_v\).

Because \(S\) is a vertex, it covers all edges. So \(S_{\cup V}\) covers all elements of the vertex cover instance as well.

\(\implies\) Suppose Set Cov \((E, \{S_v\}_{v \in V}) = \text{yes}\).

meaning that \(S_v, \ldots, S_v\) cover all elements \(1 \leq i \leq k\).

Then \(v_1, \ldots, v_k\) cover all edges of \(G\).