CSE 421

Edge Disjoint Path / Image Segmentation / Project Selection

Shayan Oveis Gharan
Marriage Theorem

Pf. \(\exists S \subseteq X \text{ s.t., } |N(S)| < |S| \iff G \text{ does not a perfect matching} \)

Formulate as a max-flow and let \((A, B)\) be the min s-t cut

If \(G\) has no perfect matching \(\Rightarrow v(f^*) < |X|\). So, \(\text{cap}(A, B) < |X|\)

Define \(X_A = X \cap A, X_B = X \cap B, Y_A = Y \cap A\)

Then, \(\text{cap}(A, B) = |X_B| + |Y_A|\)

Since min-cut does not use \(\infty\) edges, \(N(X_A) \subseteq Y_A\)

\(|N(X_A)| \leq |Y_A| = \text{cap}(A, B) - |X_B| = \text{cap}(A, B) - |X| + |X_A| < |X_A|\)
Bipartite Matching Running Time

Which max flow algorithm to use for bipartite matching?

Generic augmenting path: \(O(m \text{ val}(f^*)) = O(mn) \).
Capacity scaling: \(O(m^2 \log C) = O(m^2) \).
Shortest augmenting path: \(O(m n^{1/2}) \).

Non-bipartite matching.

Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]

Blossom algorithm: \(O(n^4) \). [Edmonds 1965]
Best known: \(O(m n^{1/2}) \). [Micali-Vazirani 1980]
Edge Disjoint Paths
Edge Disjoint Paths Problem

Given a digraph $G = (V, E)$ and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are **edge-disjoint** if they have no edge in common.

Ex: communication networks.
Max Flow Formulation

Assign a unit capacitory to every edge. Find Max flow from s to t.

Thm. Max number edge-disjoint s-t paths equals max flow value.
Pf. ≤
Suppose there are k edge-disjoint paths $P_1, ..., P_k$.
Set $f(e) = 1$ if e participates in some path P_i; else set $f(e) = 0$.
Since paths are edge-disjoint, f is a flow of value k. □
Max Flow Formulation

Thm. Max number edge-disjoint s-t paths equals max flow value.

Pf. ≥ Suppose max flow value is \(k \)

Integrality theorem \(\Rightarrow \) there exists 0-1 flow \(f \) of value \(k \).

Consider edge \((s, u)\) with \(f(s, u) = 1 \).

- by *conservation*, there exists an edge \((u, v)\) with \(f(u, v) = 1 \)
- continue until reach \(t \), always choosing a new edge

This produces \(k \) (not necessarily simple) edge-disjoint paths.

We can return to \(u \) so we can have cycles. But we can eliminate cycles if desired
Network Connectivity
Network Connectivity

Given a digraph $G = (V, E)$ and two nodes s and t, find min number of edges whose removal disconnects t from s.

Def. A set of edges $F \subseteq E$ disconnects t from s if all s-t paths uses at least one edge in F.

Ex: In testing network reliability

![Diagram of a network graph with nodes s, t, 2, 3, 4, 5, 6, and 7. Edges between nodes are shown, with s pointing to 3, 3 pointing to 2, 3 pointing to 4, 4 pointing to 7, 7 pointing to 6, 6 pointing to 5, and 5 pointing to t. The edge between 2 and 5 is highlighted in red, indicating a critical path.]
Network Connectivity using Min Cut

Thm. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Pf.

i) We show that max number edge disjoint s-t paths = max flow.

ii) Max-flow Min-cut theorem => min s-t cut = max-flow

iii) For a s-t cut (A,B), cap(A,B) is equal to the number of edges out of A. In other words, every s-t cut (A,B) corresponds to cap(A,B) edges whose removal disconnects s from t.

So, max number of edge disjoint s-t paths = min number of edges to disconnect s from t.
Image Segmentation
Image Segmentation

Given an image we want to separate foreground from background

- Central problem in image processing.
- Divide image into coherent regions.
Foreground / background segmentation

Label each pixel as foreground/background.

- $V =$ set of pixels, $E =$ pairs of neighboring pixels.
- $a_i \geq 0$ is likelihood pixel i in foreground.
- $b_i \geq 0$ is likelihood pixel i in background.
- $p_{i,j} \geq 0$ is separation penalty for labeling one of i and j as foreground, and the other as background.

Goals.

Accuracy: if $a_i > b_i$ in isolation, prefer to label i in foreground.

Smoothness: if many neighbors of i are labeled foreground, we should be inclined to label i as foreground.

Find partition (A, B) that maximizes:

$\sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E} p_{i,j}$
Difficulties:
• Maximization (as opposed to minimization)
• No source or sink
• Undirected graph

Step 1: Turn into Minimization

Maximizing
\[\sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E \atop i \in A, j \in B} p_{i,j} \]

Equivalent to minimizing
\[+ \sum_{i \in V} a_i + \sum_{j \in V} b_j - \sum_{i \in A} a_i - \sum_{j \in B} b_j + \sum_{(i,j) \in E \atop i \in A, j \in B} p_{i,j} \]

Equivalent to minimizing
\[+ \sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{(i,j) \in E \atop i \in A, j \in B} p_{i,j} \]
Min cut Formulation (cont’d)

$G' = (V', E')$.
Add s to correspond to foreground;
Add t to correspond to background
Use two anti-parallel edges
instead of undirected edge.
Consider min cut \((A, B)\) in \(G'\). (\(A = \) foreground.)

\[
cap(A, B) = \sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{(i,j) \in E \atop i \in A, j \in B} p_{i,j}
\]

Precisely the quantity we want to minimize.

Min cut Formulation (cont’d)
Project Selection
Projects with prerequisites.

- Set P of possible projects. Project v has associated revenue p_v.
 - some projects generate money: create interactive e-commerce interface, redesign web page
 - others cost money: upgrade computers, get site license
- Set of prerequisites E. If $(v, w) \in E$, can't do project v and unless also do project w.
- A subset of projects $A \subseteq P$ is **feasible** if the prerequisite of every project in A also belongs to A.

Project selection. Choose a feasible subset of projects to maximize revenue.
Prerequisite graph.

- Include an edge from \(v \) to \(w \) if can't do \(v \) without also doing \(w \).
- \(\{v, w, x\} \) is feasible subset of projects.
- \(\{v, x\} \) is infeasible subset of projects.
Min cut formulation.

- Assign capacity ∞ to all prerequisite edge.
- Add edge (s, v) with capacity p_v if $p_v > 0$.
- Add edge (v, t) with capacity $-p_v$ if $p_v < 0$.
- For notational convenience, define $p_s = p_t = 0$.

![Diagram of the project selection model with nodes and edges labeled with project values and capacities.](image-url)
Claim. \((A, B)\) is min cut iff \(A - \{s\}\) is optimal set of projects.

- Infinite capacity edges ensure \(A - \{s\}\) is feasible.
- Max revenue because:

\[
cap(A, B) = \sum_{v \in B: p_v > 0} p_v + \sum_{v \in A: p_v < 0} (-p_v)
\]

\[
= \sum_{v: p_v > 0} p_v - \sum_{v \in A} p_v
\]

constant