CSE 421

Applications of Max-Flow

Shayan Oveis Gharan

Monday is a holiday
Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value $f(e)$ and every residual capacities $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \leq nC$ iterations, if f^* is optimal flow.

Pf. Each augmentation increase value by at least 1.

Corollary. If $C = 1$, Ford-Fulkerson runs in $O(mn)$ time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value $f(e)$ is an integer.

Pf. Since algorithm terminates, theorem follows from invariant.
Applications of Max Flow: Bipartite Matching
Maximum Matching Problem

Given an undirected graph $G = (V, E)$. A set $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Goal: find a matching with largest cardinality.
Bipartite Matching Problem

Given an undirected bibpartite graph $G = (X \cup Y, E)$
A set $M \subseteq E$ is a matching if each node appears in at most one edge in M.
Goal: find a matching with largest cardinality.
Bipartite Matching using Max Flow

Create digraph H as follows:

- Orient all edges from X to Y, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.

$$
\begin{align*}
&\text{Create digraph } H \text{ as follows:} \\
&\quad \text{Orient all edges from } X \text{ to } Y, \text{ and assign infinite (or unit) capacity.} \\
&\quad \text{Add source } s, \text{ and unit capacity edges from } s \text{ to each node in } L. \\
&\quad \text{Add sink } t, \text{ and unit capacity edges from each node in } R \text{ to } t. \\
\end{align*}
$$
Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in $G = \text{value of max flow in } H$.

Pf. \leq

Given max matching M of cardinality k.
Consider flow f that sends 1 unit along each of k edges of M.
f is a flow, and has cardinality k. □
Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in \(G \) = value of max flow in \(H \).

Pf. (of \(\geq \)) Let \(f \) be a max flow in \(H \) of value \(k \).

Integrality theorem \(\Rightarrow \) \(k \) is integral and we can assume \(f \) is 0-1.

Consider \(M = \) set of edges from \(X \) to \(Y \) with \(f(e) = 1 \).

- each node in \(X \) and \(Y \) participates in at most one edge in \(M \)
- \(|M| = k \): consider s-t cut \((s \cup X, t \cup Y) \)
Perfect Bipartite Matching
Def. A matching \(M \subseteq E \) is perfect if each node appears in exactly one edge in \(M \).

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings:
• Clearly we must have \(|X| = |Y| \).
• What other conditions are necessary?
• What conditions are sufficient?
Def. Let S be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph G has a perfect matching, then $|N(S)| \geq |S|$ for all subsets $S \subseteq X$.

Pf. Each $v \in S$ has to be matched to a unique node in $N(S)$.

Perfect Bipartite Matching: $N(S)$

$N(S)$

S
Marriage Theorem

Thm: [Frobenius 1917, Hall 1935] Let $G = (X \cup Y, E)$ be a bipartite graph with $|X| = |Y|$.

Then, G has a perfect matching iff $|N(S)| \geq |S|$ for all subsets $S \subseteq X$.

Pf.

This was the previous observation.

If $|N(S)| < |S|$ for some S, then there is no perfect matching.
Marriage Theorem

Pf. \(\exists S \subseteq X \) s.t., \(|N(S)| < |S| \iff G\) does not a perfect matching
Formulate as a max-flow and let \((A, B)\) be the min s-t cut
G has no perfect matching \(\Rightarrow v(f^*) < |X|\). So, \(cap(A, B) < |X|\)
Define \(X_A = X \cap A, \ X_B = X \cap B, \ Y_A = Y \cap A\)
Then, \(cap(A, B) = |X_B| + |Y_A|\)
Since min-cut does not use \(\infty\) edges, \(N(X_A) \subseteq Y_A\)
\(|N(X_A)| \leq |Y_A| = cap(A, B) - |X_B| = cap(A, B) - |X| + |X_A| < |X_A|\)
Bipartite Matching Running Time

Which max flow algorithm to use for bipartite matching?

- Generic augmenting path: $O(m \text{ val}(f^*)) = O(mn)$.
- Capacity scaling: $O(m^2 \log C) = O(m^2)$.
- Shortest augmenting path: $O(m n^{1/2})$.

Non-bipartite matching.

Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]

- Blossom algorithm: $O(n^4)$. [Edmonds 1965]
- Best known: $O(m n^{1/2})$. [Micali-Vazirani 1980]
Edge Disjoint Paths
Edge Disjoint Paths Problem

Given a digraph $G = (V, E)$ and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are *edge-disjoint* if they have no edge in common.

Ex: communication networks.

![Diagram of a digraph with edge-disjoint paths](image)
Max Flow Formulation

Assign a unit capacity to every edge. Find Max flow from s to t.

Thm. Max number edge-disjoint s-t paths equals max flow value.

Pf. ≤

Suppose there are k edge-disjoint paths $P_1, ..., P_k$. Set $f(e) = 1$ if e participates in some path P_i; else set $f(e) = 0$. Since paths are edge-disjoint, f is a flow of value k. ▪
Thm. Max number edge-disjoint s-t paths equals max flow value.

Pf. Suppose max flow value is k.

Integrality theorem \Rightarrow there exists 0-1 flow f of value k.

Consider edge (s, u) with $f(s, u) = 1$.

- by *conservation*, there exists an edge (u, v) with $f(u, v) = 1$
- continue until reach t, always choosing a new edge

This produces k (not necessarily simple) edge-disjoint paths.

We can return to u so we can have cycles. But we can eliminate cycles if desired.