Dinceted G.
$\operatorname{OPT}(i)=$ louth of longest path ending at i.

$$
\operatorname{OPT}(i)=\max _{j: j \rightarrow i} \operatorname{OPT}(j)+1 .
$$

$\operatorname{OPT}(i, l)=\operatorname{sags}$ is then a path of both l ending at i.

$$
\operatorname{OPT}(i, l)=\operatorname{mor}^{j} \text { all }
$$

$$
\text { then } \operatorname{OP} T(i, l)=\text { trim }
$$ and false $0 / w$.

wrong $B C$ I could hake visited i to get to J
OPT(i, S) = longest path ending at i using vertices in a set S of vertices. exponentially many states.

Now usm DAG.
OBS, if $j \rightarrow i$, i cannot be in the longest path ending at j. O / w me get a cycle.
$\operatorname{OPT}(i)=$ max ${ }^{\text {ln }}$ path endiy at i.

$$
\operatorname{OPT}(i)=\max _{j: j \rightarrow i} \operatorname{OPT}(j)+1 .
$$

what order? The topological ordher.
To make sure we componte $\operatorname{OPT}(j)$ befor OPT(i).
Altirnating $\operatorname{OPT}(i)_{\text {OPT }}(i)=0$.

$$
\begin{aligned}
& \text { for } j=1 \ldots n \\
& \text { if } j \rightarrow i \\
& \text { thm } \operatorname{OPT}(i)=\max \operatorname{OPT}(i), \operatorname{Or}(j)+1)
\end{aligned}
$$

Note i) This a DAG
ii) Eny path correspuds to an increoing subsey

So lyest puth $=$ loyest incrusy subsey.
Shoortut path with ny edge meibhts
$\operatorname{OPT}(i)=$ shortert path endy at i.

$$
\text { OPT }(i)=\min _{j: j \rightarrow i} \operatorname{OPT}(j)+c_{j, i} .
$$

Problem: What is the right order? Is j closer to s or i is closer?
$\operatorname{OPT}(i, l)=$ shortest path emo at i which has $\leqslant l$ edges.

$$
\operatorname{OPT}(i, l)=\min _{j: j \rightarrow i} \operatorname{OPT}(j, l-1)+c_{j, i} .
$$

