Q/A

• I did terrible in my midterm what can I do?
 • First see if you have fundamental problems or simple mistakes?
 • Try to spend time on your areas of weakness.
 • Try more exercises: there are lots of exercise in the book
 • See https://train.usaco.org/usacogate

• Grades are not important after you leave school
 • Make sure you learn the material so you can use it for the rest of your life

• How to think, how to write?
 • Many cases it is better to spend more time on thinking than writing.
Define $C = A + B$.
For any $i < j$ we have $C[i] < C[j]$, since
\[A[i] < A[j] \] since A is sorted and distinct
\[B[i] < B[j]\] since B is sorted and distinct.
So, C is sorted and distinct.

Therefore, by Problem 4 of sample midterm, we can find an element k such that $C[k] = k$ in time $O(\log n)$.

Except, whenever we want to check the value of $C[k]$, for some k, we check the value of $A[k] + B[k]$.
Problem: Given a sequence x_1, \ldots, x_n of integers (not necessarily positive),

Goal: Find a subsequence of consecutive elements s.t., the sum of its numbers is maximum.

Applications: Figuring out the highest interest rate period in stock market
Initialize $S=0$ (Sum of numbers in Maximum Subseq)
Initialize $U=0$ (Sum of numbers in Maximum Suffix)
for (i=1 to n) {
 if ($x[i] + U > S$)
 $S = x[i] + U$

 if ($x[i] + U > 0$)
 $U = x[i] + U$
 else
 $U = 0$
}
Output S.

-3 7 -2 1 -8 6 -2 4
Pf of Correct: Maximum Sum Subseq

Ind Hypo: Suppose

• \(x_i, \ldots, x_j\) is the max-sum-subseq of \(x_1, \ldots, x_{n-1}\)
• \(x_k, \ldots, x_{n-1}\) is the max-suffix-sum-sub of \(x_1, \ldots, x_{n-1}\)

Ind Step: Suppose \(x_a, \ldots, x_b\) is the max-sum-subseq of \(x_1, \ldots, x_n\)

Case 1 \((b < n)\): \(x_a, \ldots, x_b\) is also the max-sum-subseq of \(x_1, \ldots, x_{n-1}\)
So, \(a = i, b = j\) and the algorithm correctly outputs OPT

Case 2 \((b = n)\): We must have \(x_a, \ldots, x_{b-1}\) is the max-suff-sum of \(x_1, \ldots, x_{n-1}\).
If not, then
\[x_k + \cdots + x_{n-1} > x_a + \cdots + x_{n-1}\]
So, \(x_k + \cdots + x_n > x_a + \cdots + x_b\) which is a contradiction.
Therefore, \(a = k\) and the algorithm correctly outputs OPT

Special Cases (You don’t need to mention if follows from above):
• The max-suffix-sum is empty string
• There are multiple maximum sum subsequences.
Pf of Correct: Max-Sum Suff Subseq

Ind Hypo: Suppose
- x_i, \ldots, x_j is the max-sum-subseq of x_1, \ldots, x_{n-1}
- x_k, \ldots, x_{n-1} is the max-suffix-sum-sub of x_1, \ldots, x_{n-1}

Ind Step: Suppose x_a, \ldots, x_n is the max-sum-subseq of x_1, \ldots, x_n
Note that we may also have an empty sequence

Case 1 (OPT is empty): Then, we must have $x_k + \cdots + x_n < 0$. So the algorithm correctly finds max-suffix-sum subsequence.

Case 2 (x_a, \ldots, x_n is nonempty): We must have $x_a + \cdots + x_n \geq 0$. Also, x_a, \ldots, x_{n-1} must be the max-suffix-sum of x_1, \ldots, x_{n-1}. If not, $x_a + \cdots + x_{n-1} < x_k + \cdots + x_{n-1}$ which implies $x_a + \cdots + x_n < x_k + \cdots + x_n$ which is a contradiction.

Therefore, $a = k$. So, the algorithm correctly finds max-suffix-sum subsequence.
Summary

• Try to reduce an instance of size n to smaller instances

• Before designing the algorithm study structural properties of optimum solution

• If ordinary induction fails, you may need to strengthen the induction hypothesis
Dynamic Programming
Algorithmic Paradigm

Greedy: Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer: Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems. Memorize the answers to obtain polynomial time ALG.
Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

Dynamic programming = planning over time.

Secretary of Defense was hostile to mathematical research.
Bellman sought an impressive name to avoid confrontation.

- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"
Dynamic Programming Applications

Areas:
• Bioinformatics
• Control Theory
• Information Theory
• Operations Research
• Computer Science: Theory, Graphics, AI, …

Some famous DP algorithms
• Viterbi for hidden Markov Model
• Unix diff for comparing two files.
• Smith-Waterman for sequence alignment.
• Bellman-Ford for shortest path routing in networks.
• Cocke-Kasami-Younger for parsing context free grammars.
Dynamic programming is nothing but algorithm design by induction!

We just "remember" the subproblems that we have solved so far to avoid re-solving the same sub-problem many times.
Weighted Interval Scheduling
Interval Scheduling

- Job j starts at $s(j)$ and finishes at $f(j)$ and has weight w_j.
- Two jobs compatible if they don’t overlap.
- Goal: find maximum weight subset of mutually compatible jobs.
Recall: Greedy algorithm works if all weights are 1:
- Consider jobs in ascending order of finishing time
- Add job to a subset if it is compatible with prev added jobs.

OBS: Greedy ALG fails spectacularly (no approximation ratio) if arbitrary weights are allowed:

- By finish:
 - Weight = 1000: jobs a and b
 - Weight = 1: job a

- By weight:
 - Weight = 1000: jobs a1 and b
 - Weight = 999: jobs a1, a1, a1, a1, a1, a1, a1, a1, a1
Weighted Job Scheduling by Induction

Suppose 1, ..., n are all jobs. Let us use induction:

IH (strong ind): Suppose we can compute the optimum job scheduling for < n jobs.

IS: Goal: For any n jobs we can compute OPT.

Case 1: Job n is not in OPT.
-- Then, just return OPT of 1, ..., n − 1.

Case 2: Job n is in OPT.
-- Then, delete all jobs not compatible with n and recurse.

Q: Are we done?
A: No, How many subproblems are there? Potentially 2^n all possible subsets of jobs.

\[
T(n) = T(n-1) + T(n-2) + O(1)
\]

Take best of the two
IS: For jobs 1,…,n we want to compute OPT

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$

Case 1: Suppose OPT has job n.
- So, all jobs i that are not compatible with n are not OPT
- Let $p(n) =$ largest index $i < n$ such that job i is compatible with n.
- Then, we just need to find OPT of 1, …, $p(n)$
Sorting to reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT

Sorting Idea: Label jobs by finishing time \(f(1) \leq \cdots \leq f(n) \)

Case 1: Suppose OPT has job n.
- So, all jobs \(i \) that are not compatible with n are not OPT
- Let \(p(n) = \) largest index \(i < n \) such that job \(i \) is compatible with n.
- Then, we just need to find OPT of 1, …, \(p(n) \)

Case 2: OPT does not select job n.
- Then, OPT is just the optimum 1, …, \(n - 1 \)

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form 1, …, \(i \) for some \(i \)
So, at most \(n \) possible subproblems.
Sorting to reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT
Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$

Case 1: Suppose OPT has job n.
- So, all jobs i that are not compatible with n are not OPT
- Let $p(n) = \text{largest index } i < n \text{ such that job } i \text{ is compatible with n.}$
- Then, ...

Case 2: OPT does not select job n.
- Then, OPT is just the optimum $1, \ldots, n - 1$

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form $1, \ldots, i$ for some i
So, at most n possible subproblems.
Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$

Let $OPT(j)$ denote the OPT solution of $1, \ldots, j$

To solve $OPT(j)$:

- **Case 1:** $OPT(j)$ has job j.
 - So, all jobs i that are not compatible with j are not $OPT(j)$
 - Let $p(j) =$ largest index $i < j$ such that job i is compatible with j.
 - So $OPT(j) = OPT(p(j)) \cup \{ j \}$.

- **Case 2:** $OPT(j)$ does not select job j.
 - Then, $OPT(j) = OPT(j - 1)$

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max \left(w_j + OPT(p(j)), OPT(j - 1) \right) & \text{otherwise.} \end{cases}$$

This is the most important step in design DP algorithms.
Algorithm

Input: n, $s(1), \ldots, s(n)$ and $f(1), \ldots, f(n)$ and w_1, \ldots, w_n.

Sort jobs by finish times so that $f(1) \leq f(2) \leq \cdots f(n)$.

Compute $p(1), p(2), \ldots, p(n)$

Compute-Opt(j) {
 if ($j = 0$)
 return 0
 else
 return max($w_j + \text{Compute-Opt}(p(j))$, $\text{Compute-Opt}(j-1)$)
}

$f(n) = f(n-1) + f(n-2)$
Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the solution to the subproblems.

So, we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

$$p(1) = 0, \ p(j) = j-2$$
Algorithm with Memoization

Memoization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

Input: n, s(1),...,s(n) and f(1),...,f(n) and w_1,...,w_n.

Sort jobs by finish times so that f(1) ≤ f(2) ≤ … f(n).

Compute p(1), p(2),...,p(n)

for j = 1 to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(w_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}
Bottom up Dynamic Programming

You can also avoid recursion
- recursion may be easier conceptually when you use induction

Input: $n, s(1), \ldots, s(n)$ and $f(1), \ldots, f(n)$ and w_1, \ldots, w_n.

Sort jobs by finish times so that $f(1) \leq f(2) \leq \cdots f(n)$.

Compute $p(1), p(2), \ldots, p(n)$

Iterative-Compute-Opt{

$$M[0] = 0$$

$$\text{for } j = 1 \text{ to } n$$

$$M[j] = \max (w_j + M[p(j)], M[j-1])$$

}

Output $M[n]$

Claim: $M[j]$ is value of $\text{OPT}(j)$

Timing: Easy. Main loop is $O(n)$; sorting is $O(n \log n)$
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) =$ largest index $i < j$ such that job i is compatible with j.

\[
\begin{array}{c|c|c|c}
 j & w_j & p(j) & \text{OPT}(j) \\
\hline
 0 & & & 0 \\
 1 & 3 & 0 & \\
 2 & 4 & 0 & \\
 3 & 1 & 0 & \\
 4 & 3 & 1 & \\
 5 & 4 & 0 & \\
 6 & 3 & 2 & \\
 7 & 2 & 3 & \\
 8 & 4 & 5 & \\
\end{array}
\]
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) =$ largest index $i < j$ such that job i is compatible with j.

\[
\begin{array}{c|c|c|c}
 j & w_j & p(j) & \text{OPT}(j) \\
 0 & & & 0 \\
 1 & 3 & 0 & 3 \\
 2 & 4 & 0 & \\
 3 & 1 & 0 & \\
 4 & 3 & 1 & \\
 5 & 4 & 0 & \\
 6 & 3 & 2 & \\
 7 & 2 & 3 & \\
 8 & 4 & 5 & \\
\end{array}
\]
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).
\(p(j) = \text{largest index } i < j \text{ such that job } i \text{ is compatible with } j. \)
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) =$ largest index $i < j$ such that job i is compatible with j.

\begin{tabular}{|c|c|c|c|}
\hline
i & w_i & $p(i)$ & $\text{OPT}(j)$ \\
\hline
0 & & & 0 \\
1 & 3 & 0 & 3 \\
2 & 4 & 0 & 4 \\
3 & 1 & 0 & 4 \\
4 & 3 & 1 & \\
5 & 4 & 0 & \\
6 & 3 & 2 & \\
7 & 2 & 3 & \\
8 & 4 & 5 & \\
\hline
\end{tabular}
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).

\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

<table>
<thead>
<tr>
<th>j</th>
<th>(w_j)</th>
<th>(p(j))</th>
<th>OPT(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) = \text{largest index } i < j \text{ such that job } i \text{ is compatible with } j$.
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).

\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

\[
\begin{array}{c|c|c|c}
j & w_j & p(j) & \text{OPT}(j) \\
--- & --- & --- & --- \\
0 & \text{---} & \emptyset & 0 \\
1 & 3 & 0 & 3 \\
2 & 4 & 0 & 4 \\
3 & 1 & 0 & 4 \\
4 & 3 & 1 & 6 \\
5 & 4 & 0 & 6 \\
6 & 3 & 2 & 7 \\
7 & 2 & 3 & --- \\
8 & 4 & 5 & --- \\
\end{array}
\]
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) =$ largest index $i < j$ such that job i is compatible with j.

<table>
<thead>
<tr>
<th>j</th>
<th>w_j</th>
<th>$p(j)$</th>
<th>OPT(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\emptyset</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
p(j) = largest index $i < j$ such that job i is compatible with j.
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) = \text{largest index } i < j \text{ such that job } i \text{ is compatible with } j$.

<table>
<thead>
<tr>
<th>j</th>
<th>w_j</th>
<th>p(j)</th>
<th>OPT(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>∅</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
Knapsack Problem
Knapsack Problem

Given \(n \) objects and a "knapsack."

Item \(i \) weighs \(w_i > 0 \) kilograms and has value \(v_i > 0 \).

Knapsack has capacity of \(W \) kilograms.

Goal: fill knapsack so as to maximize total value.

Ex: OPT is \{ 3, 4 \} with value 40.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

W = 11

Greedy: repeatedly add item with maximum ratio \(v_i / w_i \).

Ex: \{ 5, 2, 1 \} achieves only value = 35 \(\Rightarrow \) greedy not optimal.
Dynamic Programming: First Attempt

Let $OPT(i) =$ Max value of subsets of items $1, \ldots, i$ of weight $\leq W$.

Case 1: $OPT(i)$ does not select item i
- In this case $OPT(i) = OPT(i - 1)$

Case 2: $OPT(i)$ selects item i
- In this case, item i does not immediately imply we have to reject other items
- The problem does not reduce to $OPT(i - 1)$ because we now want to pack as much value into box of weight $\leq W - w_i$

Conclusion: We need more subproblems, we need to strengthen IH.
Stronger DP (Strengthening Hypothesis)

Let $OPT(i, w) =$ Max value subset of items $1, \ldots, i$ of weight $0 \leq w \leq W$

Case 1: $OPT(i, w)$ selects item i
- In this case, $OPT(i, w) = v_i + OPT(i - 1, w - w_i)$

Case 2: $OPT(i, w)$ does not select item i
- In this case, $OPT(i, w) = OPT(i - 1, w)$.

Therefore,

$$\begin{cases}
0 & \text{if } i = 0 \\
OPT(i - 1, w) & \text{if } w_i > w \\
\max(OPT(i - 1, w), v_i + OPT(i - 1, w - w_i)) & \text{o.w.,}
\end{cases}$$
DP for Knapsack

Compute-OPT(i,w)

if M[i,w] == empty
 if (i==0)
 M[i,w]=0
 else if (w_i > w)
 M[i,w]=Comp-OPT(i-1,w)
 else
 M[i,w]= max {Comp-OPT(i-1,w), v_i + Comp-OPT(i-1,w-w_i)}
return M[i, w]

Non-recursive

for w = 0 to W
 M[0, w] = 0
for i = 1 to n
 for w = 1 to W
 if (w_i > w)
 M[i, w] = M[i-1, w]
 else
 M[i, w] = max {M[i-1, w], v_i + M[i-1, w-w_i]}
return M[n, W]
DP for Knapsack

Item	**Value**	**Weight**
1 | 1 | 1
2 | 6 | 2
3 | 18 | 5
4 | 22 | 6
5 | 28 | 7

if \(w_i > w \)

\[
M[i, w] = M[i-1, w]
\]

else

\[
M[i, w] = \max \{ M[i-1, w], v_i + M[i-1, w-w_i] \}
\]
DP for Knapsack

Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

Dynamic Programming

If \(w_i > w \)

\[
M[i, w] = M[i-1, w]
\]

Else

\[
M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
\]

W = 11
DP for Knapsack

Value Table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>0</td>
</tr>
<tr>
<td>${1}$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>${1, 2}$</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${1, 2, 3}$</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>${1, 2, 3, 4}$</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>${1, 2, 3, 4, 5}$</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

OPT Solution

- **OPT:** $\{4, 3\}$
- **value:** $22 + 18 = 40$

Dynamic Programming Equation

If $w_i > w$,

$$M[i, w] = M[i-1, w]$$

Else,

$$M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}$$

Item Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

W = 11
DP for Knapsack

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

OPT: \(\{4, 3\} \)

value = 22 + 18 = 40

\[
\begin{align*}
\text{if} & \ (w_i > w) \\
M[i, w] &= M[i-1, w] \\
\text{else} & \\
M[i, w] &= \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
\end{align*}
\]
DP for Knapsack

\[
\text{OPT: } \{4, 3\} \\
\text{value } = 22 + 18 = 40
\]

\[
\text{if } (w_i > w) \Rightarrow M[i, w] = M[i-1, w] \\
\text{else } \Rightarrow M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
\]
DP for Knapsack

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

if \(w_i > w \)
\[
M[i, w] = M[i-1, w]
\]
else
\[
M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
\]
Knapsack Problem: Running Time

Running time: $\Theta(n \cdot W)$

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:
There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum in time $\text{Poly}(n, \log W)$.
DP Ideas so far

- You may have to define an ordering to decrease #subproblems

- You may have to strengthen DP, equivalently the induction, i.e., you have may have to carry more information to find the Optimum.

- This means that sometimes we may have to use two dimensional or three dimensional induction