1 Set Cover

We now design an approximation algorithm for the set cover problem.

Recall \([n] = \{1, \ldots, n\}\). You are given a collection of sets \(S_1, \ldots, S_m \subseteq [n]\), such that \(\cup_i S_i = [n]\). The goal is to find the smallest subcollection that includes all the elements. The set cover problem is a generalization of the vertex cover problem. You can think of each vertex as a set of its connecting edges.

The problem has many applications in practice. For example, think of the a startup who needs a number skills including marketing, software developing, accounting, data science, design, UI, etc. Each applicant may have a number of these skills. The startup wants to hire a minimum number of these applicants to include all the critical skills that it needs. There is also a natural weighted variant of the problem where each set has a weight and we want to choose a subcollection of the sets with the smallest weight.

Consider the following greedy algorithm. We show that its approximation ratio is at most \(\ln n\).

\[
\textbf{Input:} \text{ A collection of sets } S_1, \ldots, S_m \subseteq [n], \text{ such that } \cup_i S_i = [n] \\
\textbf{Result:} \text{ A small collection of sets whose union covers } [n].
\]

Let \(T = \emptyset\);
while \(\cup_{i \in T} S_i \neq [n]\) do
\(\text{If } S_j \text{ maximizes } S_j \cap ([n] - \cup_{i \in T} S_i) \), add \(j\) to \(T\);
end
Output \(T\).

\textbf{Algorithm 1: Greedy Set Cover algorithm}

\textbf{Claim 1.} If the smallest cover has \(k\) sets, then the algorithm finds a cover with at most \(k \ln n\) sets.

\textbf{Proof} Suppose the OPT has \(k\) sets. Consider an iteration \(i\) of the while loop. Let \(R = [n] - \cup_{i \in T} S_i\) be the set of remaining elements. Note that \(R \subseteq [n]\). Since OPT covers \([n]\) it also covers \(R\) with \(k\) sets. Therefore, there must be a set in OPT that covers at least \(1/k\) fraction of elements of \(R\). Since Greedy chooses the set that covers the largest fraction of elements of \(R\), the set that Greedy chooses also covers at least \(1/k\) fraction of elements of \(R\).

Now, let us calculate how the number of remaining elements changes over the iterations of the algorithm. At the beginning we have \(n\). After 1 iteration (at least) \(n/k\) elements are covered so we have at most \(n(1 - 1/k)\) elements. In the second iteration (at least) \(n(1 - 1/k)\) elements are covered so we will have (at most)

\[
n(1 - 1/k) - \frac{n(1 - 1/k)}{k} = n(1 - 1/k)(1 - 1/k) = n(1 - 1/k)^2.
\]
Similarly, after the i-th iteration of the while loop at most $n(1 - 1/k)^i$ elements are remained. Observe that we will definitely stop (and cover everything) when $n(1 - 1/k)^i < 1$ or equivalently, when $(1 - 1/k)^i < 1/n$.

So, the question is how large i should be such that $(1 - 1/k)^i < 1/n$. Here we use the following inequality without proof: For all $x \geq 0$,

$$1 - x \leq e^{-x}.$$

This can be proven by writing down the taylor series expansion of the exponential function. It follows that

$$(1 - 1/k)^i \leq e^{-i/k}.$$

So, for $i = k \ln n$ we have

$$(1 - /k)^i \leq e^{-k \ln n/k} = e^{-\ln n} = 1/n$$

as desired. ■

The above analysis for the algorithm is in fact tight. To see this, suppose the n elements are party of k disjoint sets S_1, \ldots, S_k, where the i'th set has exactly 2^i elements. Thus $n = 2 + 4 + \ldots + 2^k = 2^{k+1} - 2$. Now add two more sets A, B which are disjoint. A contains half of the elements of every S_k, and B contains the other half. So $|A| = |B| = 2^k - 1$. The algorithm will pick the k sets S_1, \ldots, S_k as the set cover, even though A, B are also a set cover.

No better efficient algorithm is known for this problem. In fact, it is proven to be impossible to break the $\Theta(\log n)$ approximation ratio assuming $\text{NP} \neq \text{P}$.

2 Weighted Set Cover

One can easily modify the above algorithm to handle the situation where each set has a cost. We pick the set that has the lowest per element cost in each step:

```
Input: A collection of sets $S_1, \ldots, S_m \subseteq [n]$, such that $\cup_i S_i = [n]$, for each set a cost $c(S_i) \geq 0$.

Result: A collection of sets whose union covers $[n]$ of small total cost.

Let $T = \emptyset$;

while $\cup_{i \in T} S_i \neq [n]$ do
| If $S_j$ minimizes $\frac{c(S_j)}{|S_j \cap ([n] - \cup_{i \in T} S_i)|}$, add $j$ to $T$ ;

end

Output $T$.
```

Algorithm 2: Greedy Set Cover algorithm with costs

Claim 2. If the smallest cover has cost C then the algorithm finds a cover of cost at most $O(C \log n)$.

Proof For every element i, define e_i to be the price of covering i, as follows. At the point e_i is covered, let L be the set of elements that have already been covered, and let S_j be the set containing i that is about to be added to the cover. Set $e_i = c(S_j)/|S_j - L|$.

16 Approximation Algorithms for Set Cover-2
Then we see that the total cost of the solution computed by the algorithm is exactly $\sum_{i=1}^{n} e_i$. Now observe that if i is covered in the j'th step of the algorithm, then at this point at least $j - 1$ elements have been covered. Moreover, since there is cover of cost C, there must be some set that covers elements at a price of $C/(n - j + 1)$, and the algorithm picks the set that covers elements at the lowest price. Thus the total cost of the solution found by the algorithm is at most $\sum_{i=1}^{n} e_i \leq C(1 + 1/2 + 1/3 + \ldots + 1/n) \leq O(C \log n)$. □