1 Set Cover

We now design an approximation algorithm for the set cover problem.
Recall $[n]=\{1, \ldots, n\}$. You are given a collection of sets $S_{1}, \ldots, S_{m} \subseteq[n]$, such that $\cup_{i} S_{i}=[n]$. The goal is to find the smallest subcollection that includes all the elements. The set cover problem is a generalization of the vertex cover problem. You can think of each vertex as a set of its connecting edges.

The problem has many applications in practice. For example, think of the a startup who needs a number skills including marketing, software developing, accounting, data science, design, UI, etc. Each applicant may have a number of these skills. The startup wants to hire a minimum number of these applicants to include all the crtitical skills that it needs. There is also a natural weighted variant of the problem where each set has a weight and we want to choose a subcollection of the sets with the smallest weight.

Consider the following greedy algorithm. We show that its approximation ratio is at most $\ln n$.

```
Input: A collection of sets \(S_{1}, \ldots, S_{m} \subseteq[n]\), such that \(\cup_{i} S_{i}=[n]\)
Result: A small collection of sets whose union covers [ \(n\) ].
Let \(T=\emptyset\);
while \(\cup_{i \in T} S_{i} \neq[n]\) do
    If \(S_{j}\) maximizes \(S_{j} \cap\left([n]-\cup_{i \in T} S_{i}\right)\), add \(j\) to \(T\);
end
Output \(T\).
```

Algorithm 1: Greedy Set Cover algorithm

Claim 1. If the smallest cover has k sets, then the algorithm finds a cover with at most $k \ln n$ sets.
Proof Suppose the OPT has k sets. Consider an iteration i of the while loop. Let $R=[n]-\cup_{i \in T} S_{i}$ be the set of remaining elements. Note that $R \subseteq[n]$. Since OPT covers [n] it also covers R with k sets. Therefore, there must be a set in OPT that covers at least $1 / k$ fraction of elements of R. Since Greedy chooses the set that covers the largest fraction of elements of R, the set that Greedy chooses also covers at least $1 / k$ fraction of elements of R.

Now, let us calculate how the number of remaining elements changes over the iterations of the algorithm. At the beginning we have n. After 1 iteration (at least) n / k elements are covered so we have at most $n(1-1 / k)$ elements. In the second iteration (at least) $\frac{n(1-1 / k)}{k}$ elements are covered so we will have (at most)

$$
n(1-1 / k)-\frac{n(1-1 / k)}{k}=n(1-1 / k)(1-1 / k)=n(1-1 / k)^{2} .
$$

Similarly, after the i-th iteration of the while loop at most $n(1-1 / k)^{i}$ elements are remained. Observe that we will definitely stop (and cover everything) when $n(1-1 / k)^{i}<1$ or equivalently, when $(1-1 / k)^{i}<1 / n$.

So, the question is how large i should be such that $(1-1 / k)^{i}<1 / n$. Here we use the following inequality without proof: For all $x \geq 0$,

$$
1-x \leq e^{-x} .
$$

This can be proven by writing down the taylor series expansion of the exponential function. It follows that

$$
(1-1 / k)^{i} \leq e^{-i / k}
$$

So, for $i=k \ln n$ we have

$$
(1-/ k)^{i} \leq e^{-k \ln n / k}=e^{-\ln n}=1 / n
$$

as desired.
The above analysis for the algorithm is in fact tight. To see this, suppose the n elements are party of k disjoint sets S_{1}, \ldots, S_{k}, where the i 'th set has exactly 2^{i} elements. Thus $n=$ $2+4+\ldots+2^{k}=2^{k+1}-2$. Now add two more sets A, B which are disjoint. A contains half of the elements of every S_{i}, and B contains the other half. So $|A|=|B|=2^{k}-1$. The algorithm will pick the k sets S_{1}, \ldots, S_{k} as the set cover, even though A, B are also a set cover.

No better efficient algorithm is known for this problem. In fact, it is proven to be impossible to break the $\Theta(\log n)$ approximation ratio assuming $\mathrm{NP} \neq \mathrm{P}$.

2 Weighted Set Cover

One can easily modify the above algorithm to handle the situation where each set has a cost. We pick the set that has the lowest per element cost in each step:

```
Input: A collection of sets \(S_{1}, \ldots, S_{m} \subseteq[n]\), such that \(\cup_{i} S_{i}=[n]\), for each set a cost
        \(c\left(S_{i}\right) \geq 0\).
Result: A collection of sets whose union covers [ \(n\) ] of small total cost.
Let \(T=\emptyset\);
while \(\cup_{i \in T} S_{i} \neq[n]\) do
    If \(S_{j}\) minimizes \(\frac{c\left(S_{j}\right)}{\left|S_{j} \cap\left([n]-\cup_{i \in T} S_{i}\right)\right|}\), add \(j\) to \(T\);
end
Output \(T\).
```

Algorithm 2: Greedy Set Cover algorithm with costs

Claim 2. If the smallest cover has cost C then the algorithm finds a cover of cost at most $O(C \log n)$.
Proof For every element i, define e_{i} to be the price of covering i, as follows. At the point e_{i} is covered, let L be the set of elements that have already been covered, and let S_{j} be the set containing i that is about to be added to the cover. Set $e_{i}=c\left(S_{j}\right) /\left|S_{j}-L\right|$.

Then we see that the total cost of the solution computed by the algorithm is exactly $\sum_{i=1}^{n} e_{i}$. Now observe that if i is covered in the j 'th step of the algorithm, then at this point at least $j-1$ elements have been covered. Moreover, since there is cover of cost C, there must be some set that covers elements at a price of $C /(n-j+1)$, and the algorithm picks the set that covers elements at the lowest price. Thus the total cost of the solution found by the algorithm is at most $\sum_{i=1}^{n} e_{i} \leq C(1+1 / 2+1 / 3+\ldots+1 / n) \leq O(C \log n)$.

