CSE 421

Set Cover, Alg Design by Induction

Shayan Oveis Gharan
A Different Greedy Rule

Greedy 2: Iteratively, pick both endpoints of an uncovered edge.

Vertex cover = 6
Greedy 2: Pick Both endpoints of an uncovered edge

Greedy vertex cover = 16

OPT vertex cover = 8
Greedy (2) gives 2-approximation

Thm: Size of greedy (2) vertex cover is at most twice as big as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges e_1, \ldots, e_k. Since these edges do not touch, every valid cover must pick one vertex from each of these edges!

i.e., $OPT \geq k$.

But the size of greedy cover is $2k$. So, Greedy is a 2-approximation.
Set Cover

Given a number of sets on a ground set of n elements,

Goal: choose minimum number of sets that cover all.

e.g., a company wants to hire employees with certain skills.
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

Set cover = 4
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

Thm: Greedy has ln n approximation ratio
A Tight Example for Greedy

Greedy = 5

OPT = 2
Greedy Gives $O(\log(n))$ approximation

Thm: If the best solution has k sets, greedy finds at most $k \ln(n)$ sets.

Pf: Suppose $\text{OPT}=k$
There is set that covers $1/k$ fraction of remaining elements, since there are k sets that cover all remaining elements.
So **in each step**, algorithm will cover $1/k$ fraction of remaining elements.

#elements uncovered after t steps

$$\leq n \left(1 - \frac{1}{k}\right)^t \leq ne^{-\frac{t}{k}}$$

So after $t = k \ln n$ steps, # uncovered elements < 1.
Approximation Alg Summary

• To design approximation Alg, always find a way to lower bound OPT

• The best known approximation Alg for vertex cover is the greedy.
 – It has been open for 50 years to obtain a polynomial time algorithm with approximation ratio better than 2

• The best known approximation Alg for set cover is the greedy.
 – It is NP-Complete to obtain better than ln n approximation ratio for set cover.
Strengthening Induction Hypothesis

We have seen examples on how to design algorithms by induction.

Basic Idea: A solution to every instance can be constructed from solutions of smaller instances.

In some cases it may help to strengthen the IH. High-level plan: Prove $P(n) \land Q(n)$ inductively.

IH: Assume $P(n - 1) \land Q(n - 1)$.

IS: You may use $Q(n - 1)$ to help you to prove $P(n)$. Remember you also have to prove $Q(n)$.
Maximum Consecutive Subsequence

Problem: Given a sequence \(x_1, \ldots, x_n \) of integers (not necessarily positive),

Goal: Find a subsequence of consecutive elements s.t., the sum of its numbers is maximum.

\[
1 \quad -3 \quad 7 \quad -2 \quad -3 \quad 8 \quad -10 \quad 1 \quad -7
\]

Applications: Figuring out the highest interest rate period in stock market.
Brute Force Approach

Try all consecutive subsequences of the input sequence.

There are \(\binom{n}{2} = \Theta(n^2) \) such sequences.

We can compute the sum of numbers in each such sequence in \(O(n) \) steps.

So, the ALG runs in \(O(n^3) \).

With a clever loop we can do this in \(O(n^2) \).

But, can we solve in linear time?
First Attempt (Induction)

Suppose we can find the maximum-sum subsequence of x_1, \ldots, x_{n-1}. Say it is x_i, \ldots, x_j

- If $x_n < 0$ then it does not belong to the largest subsequence. So, we can output x_i, \ldots, x_j

- Suppose $x_n > 0$
 - If $j = n - 1$ then x_i, \ldots, x_n is the maximum-sum subsequence.
 - If $j < n - 1$ there are two possibilities
 1) x_i, \ldots, x_j is still the maximum-sum subsequence
 2) A sequence x_k, \ldots, x_n is the maximum-sum subsequence

\[-3, \framebox{7}, -2, 1, -8, \framebox{6}, -2, 4\]

\[x_{n-1} \quad x_n\]
Second Attempt (Strengthening Ind Hyp)

Stronger Ind Hypothesis: Given x_1, \ldots, x_{n-1} we can compute the maximum-sum subsequence, and the maximum-sum suffix subsequence.

Say x_i, \ldots, x_j is the maximum-sum and x_k, \ldots, x_{n-1} is the maximum-sum suffix subsequences.

- If $x_k + \cdots + x_{n-1} + x_n > x_i + \cdots + x_j$ then x_k, \ldots, x_n will be the new maximum-sum subsequence
Are we done?
Updating Max Suffix Subsequence

Say x_k, \ldots, x_{n-1} is the maximum-sum suffix subsequences of x_1, \ldots, x_{n-1}.

- If $x_k + \cdots + x_n \geq 0$ then, x_k, \ldots, x_n is the new maximum-sum suffix subsequence.
- Otherwise, The new maximum-sum suffix is the empty string.
Initialize $S=0$ (Sum of numbers in Maximum Subseq)
Initialize $U=0$ (Sum of numbers in Maximum Suffix)
for (i=1 to n) {
 if ($x[i] + U > S$)
 $S = x[i] + U$
 if ($x[i] + U > 0$)
 $U = x[i] + U$
 else
 $U = 0$
}
Output S.

<table>
<thead>
<tr>
<th></th>
<th>-3</th>
<th>7</th>
<th>-2</th>
<th>1</th>
<th>-8</th>
<th>6</th>
<th>-2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S=0$</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$U=0$</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Pf of Correct: Maximum Sum Subseq

Ind Hypo: Suppose

- \(x_i, ..., x_j \) is the max-sum-subseq of \(x_1, ..., x_{n-1} \)
- \(x_k, ..., x_{n-1} \) is the max-suffix-sum-sub of \(x_1, ..., x_{n-1} \)

Ind Step: Suppose \(x_a, ..., x_b \) is the max-sum-subseq of \(x_1, ..., x_n \)

Case 1 \((b < n)\): \(x_a, ..., x_b \) is also the max-sum-subseq of \(x_1, ..., x_{n-1} \)

So, \(a = i, b = j \) and the algorithm correctly outputs OPT

Case 2 \((b = n)\): We must have \(x_a, ..., x_{b-1} \) is the max-suff-sum of \(x_1, ..., x_{n-1} \).

If not, then

\[x_k + \cdots + x_{n-1} > x_a + \cdots + x_{n-1} \]

So, \(x_k + \cdots + x_n > x_a + \cdots + x_b \) which is a contradiction.

Therefore, \(a = k \) and the algorithm correctly outputs OPT

Special Cases (You don’t need to mention if follows from above):

- The max-suffix-sum is empty string
- There are multiple maximum sum subsequences.
Pf of Correct: Max-Sum Suff Subseq

Ind Hypo: Suppose

- \(x_i, ..., x_j \) is the max-sum-subseq of \(x_1, ..., x_{n-1} \)
- \(x_k, ..., x_{n-1} \) is the max-suffix-sum-sub of \(x_1, ..., x_{n-1} \)

Ind Step: Suppose \(x_a, ..., x_n \) is the max-sum-subseq of \(x_1, ..., x_n \)

Note that we may also have an empty sequence

Case 1 (OPT is empty): Then, we must have \(x_k + ... + x_n < 0 \). So the algorithm correctly finds max-suffix-sum subsequence.

Case 2 (\(x_a, ..., x_n \) is nonempty): We must have \(x_a + ... + x_n \geq 0 \). Also, \(x_a, ..., x_{n-1} \) must be the max-suffix-sum of \(x_1, ..., x_{n-1} \). If not, \(x_a + ... + x_{n-1} < x_k + ... + x_{n-1} \) which implies \(x_a + ... + x_n < x_k + ... + x_n \) which is a contradiction.

Therefore, \(a = k \). So, the algorithm correctly finds max-suffix-sum subsequence.
Summary

• Try to reduce an instance of size n to smaller instances
 • Never solve a problem twice

• Before designing an algorithm study properties of optimum solution

• If ordinary induction fails, you may need to strengthen the induction hypothesis