
CSE 421

Set Cover, Alg Design by Induction

Shayan Oveis Gharan

1

Greedy 2: Iteratively, pick both endpoints of an uncovered
edge.

A Different Greedy Rule

Vertex cover = 6

Greedy 2: Pick Both endpoints of an
uncovered edge

𝐵"𝐵# 𝐵$
𝐵%

Greedy vertex cover = 16

OPT vertex cover = 8

Thm: Size of greedy (2) vertex cover is at most twice as big
as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges 𝑒#, … , 𝑒).
Since these edges do not touch, every valid cover must pick
one vertex from each of these edges!

i.e., 𝑂𝑃𝑇 ≥ 𝑘.

But the size of greedy cover is 2k. So, Greedy is a 2-
approximation.

Greedy (2) gives 2-approximation

Set Cover
Given a number of sets on a ground set of n elements,

Goal: choose minimum number of sets that cover all.

e.g., a company wants to hire employees with certain
skills.

Set Cover
Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.
Set cover = 4

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

Thm: Greedy has ln n approximation ratio

A Tight Example for Greedy

A Tight Example for Greedy

A Tight Example for Greedy

A Tight Example for Greedy

A Tight Example for Greedy

A Tight Example for Greedy

OPT = 2Greedy = 5

Thm: If the best solution has k sets, greedy finds at most k
ln(n) sets.

Pf: Suppose OPT=k
There is set that covers 1/k fraction of remaining elements,
since there are k sets that cover all remaining elements.
So in each step, algorithm will cover 1/k fraction of
remaining elements.

#elements uncovered after t steps

≤ 𝑛 1 −
1
𝑘

𝑡 ≤
𝑛𝑒5

6
)

So after 𝑡 = 𝑘 ln 𝑛 steps, # uncovered elements < 1.

Greedy Gives O(log(n)) approximation

Approximation Alg Summary
• To design approximation Alg, always find a way to lower

bound OPT

• The best known approximation Alg for vertex cover is the
greedy.
– It has been open for 50 years to obtain a polynomial time

algorithm with approximation ratio better than 2

• The best known approximation Alg for set cover is the
greedy.
– It is NP-Complete to obtain better than ln n approximation ratio

for set cover.

Strengthening Induction Hypothesis
We have seen examples on how to design algorithms by
induction

Basic Idea: A solution to every instance can be constructed
from solutions of smaller instances

In some cases it may help to strengthen the IH.
High-level plan: Prove 𝑃 𝑛 ∧ 𝑄(𝑛) inductively.

IH: Assume 𝑃 𝑛 − 1 ∧ 𝑄 𝑛 − 1 .

IS: You may use 𝑄(𝑛 − 1) to help you to prove 𝑃(𝑛)
Remember you also have to prove 𝑄 𝑛 .

20

Maximum Consecutive Subsequence

Problem: Given a sequence 𝑥#, … , 𝑥? of integers (not
necessarily positive),
Goal: Find a subsequence of consecutive elements s.t., the
sum of its numbers is maximum.

1 -3 7 -2 -3 8 -10 1 -7

Applications: Figuring out the highest interest rate period in
stock market

21

Brute Force Approach

Try all consecutive subsequences of the input sequence.

There are ?
" = Θ(𝑛") such sequences.

We can compute the sum of numbers in each such
sequence in 𝑂 𝑛 steps.

So, the ALG runs in 𝑂(𝑛$).

With a clever loop we can do this in 𝑂 𝑛" .
But, can we solve in linear time?

22

First Attempt (Induction)
Suppose we can find the maximum-sum subsequence of
𝑥#, … , 𝑥?5#. Say it is 𝑥A, … , 𝑥B

• If 𝑥? < 0 then it does not belong to the largest
subsequence. So, we can output 𝑥A, … , 𝑥B

• Suppose 𝑥? > 0.
• If 𝑗 = 𝑛 − 1 then 𝑥A, … , 𝑥? is the maximum-sum

subsequence.

• If 𝑗 < 𝑛 − 1 there are two possibilities
1) 𝑥A, … , 𝑥B is still the maximum-sum subsequence
2) A sequence 𝑥), … , 𝑥? is the maximum-sum subseqence

-3, 7, -2, 1, -8, 6, -2,

23

4

𝑥?𝑥?5#

Second Attempt (Strengthing Ind Hyp)

Stronger Ind Hypothesis: Given 𝑥#, … , 𝑥?5# we can compute
the maximum-sum subsequence, and the maximum-sum
suffix subsequence.

-3, 7, -2, 1, -8, 6, -2

Say 𝒙𝒊, … , 𝒙𝒋 is the maximum-sum and 𝑥),… , 𝑥?5# is the
maximum-sum suffix subsequences.

• If 𝑥) +⋯+ 𝑥?5# + 𝑥? > 𝑥A + ⋯+ 𝑥B then 𝑥),… , 𝑥? will be
the new maximum-sum subsequence

24

𝑥A 𝑥B 𝑥) 𝑥?5#Can be empty

Are we done?

25

Updating Max Suffix Subsequence

Say 𝑥),… , 𝑥?5# is the maximum-sum suffix subsequences
of 𝑥#, … , 𝑥?5#.

• If 𝑥) +⋯+ 𝑥? ≥ 0 then,
𝑥),… , 𝑥? is the new maximum-sum suffix subsequence

• Otherwise,
The new maximum-sum suffix is the empty string.

26

-3, 7, -2, 1, -8, 6, -2, 4
𝑥?

Maximum Sum Subsequence ALG

27

Initialize S=0 (Sum of numbers in Maximum Subseq)
Initialize U=0 (Sum of numbers in Maximum Suffix)
for (i=1 to n) {

if (x[i] + U > S)
S = x[i] + U

if (x[i] + U > 0)
U = x[i] + U

else
U = 0

}
Output S.

-3 7 -2 1 -8 6 -2 4

Pf of Correct: Maximum Sum Subseq
Ind Hypo: Suppose
• 𝑥A, … , 𝑥B is the max-sum-subseq of 𝑥#, … , 𝑥?5#
• 𝑥), … , 𝑥?5# is the max-suffix-sum-sub of 𝑥#, … , 𝑥?5#

Ind Step: Suppose 𝑥M, … , 𝑥N is the max-sum-subseq of 𝑥#, … , 𝑥?

Case 1 (𝑏 < 𝑛): 𝑥M, … , 𝑥N is also the max-sum-subseq of 𝑥#, … , 𝑥?5#
So, 𝑎 = 𝑖, 𝑏 = 𝑗 and the algorithm correctly outputs OPT

Case 2 (𝑏 = 𝑛): We must have 𝑥M, … , 𝑥N5# is the max-suff-sum of
𝑥#, … , 𝑥?5#.
If not, then

𝑥) + ⋯𝑥?5# > 𝑥M + ⋯+ 𝑥?5#
So, 𝑥) + ⋯+ 𝑥? > 𝑥M + ⋯+ 𝑥N which is a contradiction.
Therefore, 𝑎 = 𝑘 and the algorithm correctly outputs OPT

28

Special Cases (You don’t need to mention if follows from above):
• The max-suffix-sum is empty string
• There are multiple maximum sum subsequences.

Pf of Correct: Max-Sum Suff Subseq
Ind Hypo: Suppose
• 𝑥A, … , 𝑥B is the max-sum-subseq of 𝑥#, … , 𝑥?5#
• 𝑥), … , 𝑥?5# is the max-suffix-sum-sub of 𝑥#, … , 𝑥?5#

Ind Step: Suppose 𝑥M, … , 𝑥? is the max-sum-subseq of 𝑥#, … , 𝑥?
Note that we may also have an empty sequence

Case 1 (OPT is empty): Then, we must have 𝑥) + ⋯+ 𝑥? < 0. So the
algorithm correctly finds max-suffix-sum subsequence.

Case 2 (𝑥M, … , 𝑥? is nonempty): We must have 𝑥M + ⋯+ 𝑥? ≥ 0.
Also, 𝑥M, … , 𝑥?5# must be the max-suffix-sum of 𝑥#, … , 𝑥?5#. If not,

𝑥M + ⋯+ 𝑥?5# < 𝑥) + ⋯+ 𝑥?5#
which implies 𝑥M + ⋯+ 𝑥? < 𝑥) + ⋯+ 𝑥_𝑛 which is a contradiction.

Therefore, 𝑎 = 𝑘. So, the algorithm correctly finds max-suffix-sum
subseqence.

29

Summary

• Try to reduce an instance of size n to smaller instances
• Never solve a problem twice

• Before designing an algorithm study properties of
optimum solution

• If ordinary induction fails, you may need to strengthen
the induction hypothesis

30

