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Greedy 2: Iteratively, pick both endpoints of an uncovered 
edge.

A Different Greedy Rule

Vertex cover = 6



Greedy 2: Pick Both endpoints of an 
uncovered edge 

𝐵"𝐵# 𝐵$
𝐵%

Greedy vertex cover = 16

OPT vertex cover = 8



Thm: Size of greedy (2) vertex cover is at most twice as big 
as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges 𝑒#, … , 𝑒).
Since these edges do not touch, every valid cover must pick 
one vertex from each of these edges! 

i.e., 𝑂𝑃𝑇 ≥ 𝑘.

But the size of greedy cover is 2k. So, Greedy is a 2-
approximation.

Greedy (2) gives 2-approximation



Set Cover
Given a number of sets on a ground set of n elements, 

Goal: choose minimum number of sets that cover all. 

e.g., a company wants to hire employees with certain 
skills.   



Set Cover
Given a number of sets on a ground set of elements, 

Goal: choose minimum number of sets that cover all. 
Set cover = 4



A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
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A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered



A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

Thm: Greedy has ln n approximation ratio



A Tight Example for Greedy
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A Tight Example for Greedy



A Tight Example for Greedy

OPT = 2Greedy = 5



Thm: If the best solution has k sets, greedy finds at most k 
ln(n) sets.

Pf: Suppose OPT=k 
There is set that covers 1/k fraction of remaining elements, 
since there are k sets that cover all remaining elements. 
So in each step, algorithm will cover 1/k fraction of 
remaining elements.

#elements uncovered after t steps 

≤ 𝑛 1 −
1
𝑘

𝑡 ≤
𝑛𝑒5

6
)

So after 𝑡 = 𝑘 ln 𝑛 steps, # uncovered elements < 1.

Greedy Gives O(log(n)) approximation



Approximation Alg Summary
• To design approximation Alg, always find a way to lower 

bound OPT

• The best known approximation Alg for vertex cover is the 
greedy. 
– It has been open for 50 years to obtain a polynomial time 

algorithm with approximation ratio better than 2

• The best known approximation Alg for set cover is the 
greedy.
– It is NP-Complete to obtain better than ln n approximation ratio 

for set cover. 



Strengthening Induction Hypothesis
We have seen examples on how to design algorithms by 
induction

Basic Idea: A solution to every instance can be constructed 
from solutions of smaller instances

In some cases it may help to strengthen the IH.
High-level plan: Prove 𝑃 𝑛 ∧ 𝑄(𝑛) inductively.

IH: Assume 𝑃 𝑛 − 1 ∧ 𝑄 𝑛 − 1 .

IS: You may use 𝑄(𝑛 − 1) to help you to prove 𝑃(𝑛)
Remember you also have to prove 𝑄 𝑛 .
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Maximum Consecutive Subsequence

Problem: Given a sequence 𝑥#, … , 𝑥? of integers (not 
necessarily positive), 
Goal: Find a subsequence of consecutive elements s.t., the 
sum of its numbers is maximum.

1   -3    7   -2   -3    8   -10   1    -7

Applications: Figuring out the highest interest rate period in 
stock market
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Brute Force Approach

Try all consecutive subsequences of the input sequence.

There are ?
" = Θ(𝑛") such sequences. 

We can compute the sum of numbers in each such 
sequence in 𝑂 𝑛 steps.

So, the ALG runs in 𝑂(𝑛$).

With a clever loop we can do this in 𝑂 𝑛" .
But, can we solve in linear time?
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First Attempt (Induction)
Suppose we can find the maximum-sum subsequence of 
𝑥#, … , 𝑥?5#. Say it is 𝑥A, … , 𝑥B

• If 𝑥? < 0 then it does not belong to the largest 
subsequence. So, we can output 𝑥A, … , 𝑥B

• Suppose 𝑥? > 0.
• If 𝑗 = 𝑛 − 1 then 𝑥A, … , 𝑥? is the maximum-sum 

subsequence.

• If 𝑗 < 𝑛 − 1 there are two possibilities
1) 𝑥A, … , 𝑥B is still the maximum-sum subsequence
2) A sequence 𝑥), … , 𝑥? is the maximum-sum subseqence

-3,   7,   -2,  1,   -8,   6,   -2,        
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Second Attempt (Strengthing Ind Hyp)

Stronger Ind Hypothesis: Given 𝑥#, … , 𝑥?5# we can compute 
the maximum-sum subsequence, and the maximum-sum 
suffix subsequence.

-3,   7,  -2,  1,  -8,  6,  -2

Say 𝒙𝒊, … , 𝒙𝒋 is the maximum-sum and 𝑥),… , 𝑥?5# is the 
maximum-sum suffix subsequences.

• If 𝑥) +⋯+ 𝑥?5# + 𝑥? > 𝑥A + ⋯+ 𝑥B then 𝑥),… , 𝑥? will be 
the new maximum-sum subsequence
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𝑥A 𝑥B 𝑥) 𝑥?5#Can be empty



Are we done?
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Updating Max Suffix Subsequence

Say 𝑥),… , 𝑥?5# is the maximum-sum suffix subsequences 
of 𝑥#, … , 𝑥?5#.

• If 𝑥) +⋯+ 𝑥? ≥ 0 then, 
𝑥),… , 𝑥? is the new maximum-sum suffix subsequence

• Otherwise,
The new maximum-sum suffix is the empty string.
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-3,   7,  -2,  1,  -8,  6,  -2,       4
𝑥?



Maximum Sum Subsequence ALG
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Initialize S=0 (Sum of numbers in Maximum Subseq)
Initialize U=0 (Sum of numbers in Maximum Suffix)
for (i=1 to n) {

if (x[i] + U > S)
S = x[i] + U

if (x[i] + U > 0)
U = x[i] + U

else
U = 0

}
Output S.

-3       7       -2       1        -8        6       -2       4



Pf of Correct: Maximum Sum Subseq
Ind Hypo: Suppose 
• 𝑥A, … , 𝑥B is the max-sum-subseq of 𝑥#, … , 𝑥?5#
• 𝑥), … , 𝑥?5# is the max-suffix-sum-sub of 𝑥#, … , 𝑥?5#

Ind Step: Suppose 𝑥M, … , 𝑥N is the max-sum-subseq of 𝑥#, … , 𝑥?

Case 1 (𝑏 < 𝑛): 𝑥M, … , 𝑥N is also the max-sum-subseq of 𝑥#, … , 𝑥?5#
So, 𝑎 = 𝑖, 𝑏 = 𝑗 and the algorithm correctly outputs OPT

Case 2 (𝑏 = 𝑛): We must have 𝑥M, … , 𝑥N5# is the max-suff-sum of 
𝑥#, … , 𝑥?5#.
If not, then

𝑥) + ⋯𝑥?5# > 𝑥M + ⋯+ 𝑥?5#
So, 𝑥) + ⋯+ 𝑥? > 𝑥M + ⋯+ 𝑥N which is a contradiction.
Therefore, 𝑎 = 𝑘 and the algorithm correctly outputs OPT
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Special Cases (You don’t need to mention if follows from above): 
• The max-suffix-sum is empty string
• There are multiple maximum sum subsequences.



Pf of Correct: Max-Sum Suff Subseq
Ind Hypo: Suppose 
• 𝑥A, … , 𝑥B is the max-sum-subseq of 𝑥#, … , 𝑥?5#
• 𝑥), … , 𝑥?5# is the max-suffix-sum-sub of 𝑥#, … , 𝑥?5#

Ind Step: Suppose 𝑥M, … , 𝑥? is the max-sum-subseq of 𝑥#, … , 𝑥?
Note that we may also have an empty sequence

Case 1 (OPT is empty): Then,  we must have 𝑥) + ⋯+ 𝑥? < 0. So the 
algorithm correctly finds max-suffix-sum subsequence.

Case 2 (𝑥M, … , 𝑥? is nonempty): We must have 𝑥M + ⋯+ 𝑥? ≥ 0. 
Also, 𝑥M, … , 𝑥?5# must be the max-suffix-sum of 𝑥#, … , 𝑥?5#. If not, 

𝑥M + ⋯+ 𝑥?5# < 𝑥) + ⋯+ 𝑥?5#
which implies 𝑥M + ⋯+ 𝑥? < 𝑥) + ⋯+ 𝑥_𝑛 which is a contradiction.

Therefore, 𝑎 = 𝑘. So, the algorithm correctly finds max-suffix-sum 
subseqence.
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Summary

• Try to reduce an instance of size n to smaller instances
• Never solve a problem twice

• Before designing an algorithm study properties of 
optimum solution

• If ordinary induction fails, you may need to strengthen 
the induction hypothesis
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