CSE 421

Median, Approximation Alg

Shayan Oveis Gharan
Median
Finding Median

Choose a number \(w \) from \(x_1, \ldots, x_n \)

Define
\[
\begin{align*}
S_<(w) &= \{ x_i : x_i < w \} \\
S_=(w) &= \{ x_i : x_i = w \} \\
S_>(w) &= \{ x_i : x_i > w \}
\end{align*}
\]

Can be computed in linear time

Solve the problem recursively
\[
\begin{align*}
\text{If } k &\leq |S_< (w)|, \text{ output } Sel(S_< (w), k) \\
\text{Else if } k &\leq |S_< (w)| + |S_=(w)|, \text{ output } w \\
\text{Else output } Sel(S_>(w), k - |S_< (w)| - |S_=(w)|)
\end{align*}
\]
How to lower bound $|S_{<}(w)|$, $|S_{>}(w)|$?

- $|S_{<}(w)| \geq 2 \left(\frac{n}{6}\right) = \frac{n}{3}$
- $|S_{>}(w)| \geq 2 \left(\frac{n}{6}\right) = \frac{n}{3}$.

So, what is the running time?
Asymptotic Running Time?

- If $k \leq |S_<(w)|$, output $Sel(S_<(w), k)$
- Else if $k \leq |S_<(w)| + |S_=(w)|$, output w
- Else output $Sel(S_>(w), k - S_<(w) - S_=(w))$

Where $\frac{n}{3} \leq |S_<(w)|, |S_>(w)| \leq \frac{2n}{3}$

$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + O(n) \Rightarrow T(n) = O(n \log n)$$
Partition into $n/5$ sets. Sort each set and set $w = Sel(midpoints, n/10)$

- $|S_{<}(w)| \geq 3 \left(\frac{n}{10} \right) = \frac{3n}{10}$
- $|S_{>}(w)| \geq 3 \left(\frac{n}{10} \right) = \frac{3n}{10}$

\[T(n) = T\left(\frac{n}{5} \right) + T\left(\frac{7n}{10} \right) + O(n) \Rightarrow T(n) = O(n) \]
An Improved Idea

Sel(S, k) {
 n ← |S|
 If (n < ??) return ??
 Partition S into n/5 sets of size 5
 Sort each set of size 5 and let M be the set of medians, so |M|=n/5
 Let w=Sel(M,n/10)
 For i=1 to n{
 If $x_i < w$ add x to $S_<(w)$
 If $x_i > w$ add x to $S_>(w)$
 If $x_i = w$ add x to $S_=(w)$
 }
 If (k ≤ |$S_<(w)$|)
 return Sel($S_<(w)$, k)
 else if (k ≤ |$S_<(w)$| + |$S_=(w)$|)
 return w;
 else
 return Sel($S_>(w)$, k − |$S_<(w)$| − |$S_=(w)$|)
}

We can maintain each set in an array
D&C Summary

Idea:

“Two halves are better than a whole”
- if the base algorithm has super-linear complexity.

“If a little's good, then more's better”
- repeat above, recursively

- Applications: Many.
 - Binary Search, Merge Sort, (Quicksort),
 - Root of a Function
 - Closest points,
 - Integer multiplication
 - Median
 - Matrix Multiplication
Approximation Algorithms
How to deal with NP-complete Problem

Many of the important problems in real world are NP-complete.
 SAT, Set Cover, Graph Coloring, TSP, Max IND Set, Vertex Cover, …

So, we cannot find optimum solutions in polynomial time. What to do instead?

- Find optimum solution of special cases (e.g., random inputs)
- Find near optimum solution in the worst case
Approximation Algorithm

Polynomial-time Algorithms with a guaranteed approximation ratio.

\[\alpha = \frac{\text{Cost of computed solution}}{\text{Cost of the optimum}} \]

worst case over all instances.

Goal: For each NP-hard problem find an approximation algorithm with the best possible approximation ratio.
Given a graph $G=(V,E)$, find the smallest set of vertices touching every edge.

Vertex Cover
Greedy algorithms are typically used in practice to find a (good) solution to NP-hard problems.

Strategy (1): Iteratively, include a vertex that covers most new edges.

Q: Does this give an optimum solution?
A: No,
Greedy (1): Pick vertex that covers the most

Greedy Vertex cover = 20
OPT Vertex cover = 8
Greedy (1): Pick vertex that covers the most n vertices. Each vertex has one edge into each B_i

Each vertex in B_i has i edges to top

Greedy pick bottom vertices $= n + \frac{n}{2} + \frac{n}{3} + \cdots + 1 \approx n \ln n$

OPT pick top vertices $= n$
A Different Greedy Rule

Greedy 2: Iteratively, pick both endpoints of an uncovered edge.

Vertex cover = 6
Greedy 2: Pick Both endpoints of an uncovered edge

Greedy vertex cover = 16

OPT vertex cover = 8
Thm: Size of greedy (2) vertex cover is at most twice as big as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges e_1, \ldots, e_k. Since these edges do not touch, every valid cover must pick one vertex from each of these edges!

i.e., $OPT \geq k$.

But the size of greedy cover is $2k$. So, Greedy is a 2-approximation.
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

...e.g., a company wants to hire employees with certain skills.
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

Set cover = 4
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

Thm: Greedy has $\ln n$ approximation ratio
A Tight Example for Greedy

Greedy = 5

OPT = 2
Thm: If the best solution has k sets, greedy finds at most $k \ln(n)$ sets.

Pf: Suppose $OPT=k$
There is set that covers $1/k$ fraction of remaining elements, since there are k sets that cover all remaining elements.
So in each step, algorithm will cover $1/k$ fraction of remaining elements.

Number of elements uncovered after t steps

$$\leq n \left(1 - \frac{1}{k}\right)^t \leq ne^{-\frac{t}{k}}$$

So after $t = k \ln n$ steps, # uncovered elements < 1.