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Median



Finding Median
Choose a number ! from "#, … , "&
Define
• () ! = "+: "+ < !
• (. ! = "+: "+ = !
• (/ ! = "+: "+ > !

Solve the problem recursively
• If 1 ≤ |()(!)|, output (67(() ! , 1)
• Else if 1 ≤ () ! + (. ! , output w
• Else output (67((/ ! , 1 − |() ! | − |(. ! |)

Can be computed in 
linear time



• "# $ ≥ 2 '
( = '

*
• "+ $ ≥ 2 '

( = '
* .

So, what is the running time?

How to lower bound "# $ , |"+ $ |?
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3 ≤ |"# $ |, "+ $ ≤ 23
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• If ! ≤ |$%(')|, output $)*($% ' , !)
• Else if ! ≤ $% ' + $- ' , output w
• Else output $)*($. ' , ! − $% ' − $- ' )

Where 0
1 ≤ $% ' , $. ' ≤ 20

1

3 4 = 3 4
3 + 3 24

3 + 8 4 ⇒ 3 4 = 8(4 log 4)

Asymptotic Running Time?
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O(nlog n) again? 
So, what is the point?



Partition into n/5 sets. Sort each set and set ! = #$%('()*+(,-., ,/10)

• #4 ! ≥ 3 7
89 = :7

89
• #; ! ≥ 3 7

89 = :7
89

< , = < ,
5 + < 7,

10 + @ , ⇒ < , = @(,)

An Improved Idea
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An Improved Idea
Sel(S, k) {

! ← #
If (n < ??) return ??
Partition S into n/5 sets of size 5
Sort each set of size 5 and let M be the set of medians, so 

|M|=n/5
Let w=Sel(M,n/10)
For i=1 to n{

If $% < ' add x to #( '
If $% > ' add x to #* '
If $% = ' add x to #,(')

}
If (/ ≤ |#( ' |)

return Sel(#( ' , /)
else if (/ ≤ #( ' + |#, ' |)

return w;
else

return Sel(#* ' , / − #( ' − |#,(')|)
}

We can maintain each
set in an array 



D&C Summary
Idea:

“Two halves are better than a whole”
• if the base algorithm has super-linear complexity.

“If a little's good, then more's better”
• repeat above, recursively

• Applications: Many.  
• Binary Search, Merge Sort, (Quicksort), 
• Root of a Function
• Closest points, 
• Integer multiplication
• Median
• Matrix Multiplication



Approximation Algorithms



Many of the important problems in real world are NP-
complete. 
SAT, Set Cover, Graph Coloring, TSP, Max IND Set, 
Vertex Cover, …

So, we cannot find optimum solutions in polynomial time.
What to do instead?

• Find optimum solution of special cases (e.g., random 
inputs)

• Find near optimum solution in the worst case

How to deal with NP-complete Problem



Polynomial-time  Algorithms with a guaranteed 
approximation ratio.

! = Cost of computed solution
Cost of the optimum

worst case over all instances. 

Goal: For each NP-hard problem find an approximation 
algorithm with the best possible approximation ratio.

Approximation Algorithm



Given a graph G=(V,E), Find smallest set of vertices 
touching every edge 

Vertex Cover



Greedy algorithms are typically used in practice to find a 
(good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most 
new edges

Q:Does this give an optimum solution?
A: No, 

Greedy Algorithm?



Greedy (1): Pick vertex that covers the most

!"!# !$
!%
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Greedy (1): Pick vertex that covers the most

!"!# !$
!%

Greedy Vertex cover = 20
OPT Vertex cover = 8



Greedy (1): Pick vertex that covers the most

|"#| = %/'"( ")"(*)

% vertices. Each vertex has one edge into each "#

Greedy pick bottom vertices = % + (
, +

(
- + ⋯+ 1 ≈ % ln %

OPT pick top vertices = n

Each vertex in "# has ' edges to top



Greedy 2: Iteratively, pick both endpoints of an uncovered 
edge.

A Different Greedy Rule

Vertex cover = 6



Greedy 2: Pick Both endpoints of an 
uncovered edge 

!"!# !$
!%

Greedy vertex cover = 16

OPT vertex cover = 8



Thm: Size of greedy (2) vertex cover is at most twice as big 
as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges !", … , !%.
Since these edges do not touch, every valid cover must pick 
one vertex from each of these edges! 

i.e., '() ≥ +.

But the size of greedy cover is 2k. So, Greedy is a 2-
approximation.

Greedy (2) gives 2-approximation



Set Cover
Given a number of sets on a ground set of elements, 

Goal: choose minimum number of sets that cover all. 

e.g., a company wants to hire employees with certain 
skills.   



Set Cover
Given a number of sets on a ground set of elements, 

Goal: choose minimum number of sets that cover all. 
Set cover = 4



A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
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A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

Thm: Greedy has ln n approximation ratio



A Tight Example for Greedy
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A Tight Example for Greedy

OPT = 2Greedy = 5



Thm: If the best solution has k sets, greedy finds at most k 
ln(n) sets.

Pf: Suppose OPT=k 
There is set that covers 1/k fraction of remaining elements, 
since there are k sets that cover all remaining elements. 
So in each step, algorithm will cover 1/k fraction of 
remaining elements.

#elements uncovered after t steps 

≤ " 1 − 1%
& ≤ "'(

)
*

So after & = % ln " steps, # uncovered elements < 1.

Greedy Gives O(log(n)) approximation


