

Median, Approximation Alg

Shayan Oveis Gharan

Median

Finding Median

Choose a number *w* from x_1, \ldots, x_n

Define

•
$$S_{<}(w) = \{x_i : x_i < w\}$$

•
$$S_{=}(w) = \{x_i : x_i = w\}$$

•
$$S_{>}(w) = \{x_i : x_i > w\}$$

Can be computed in linear time

Solve the problem recursively

- If $k \leq |S_{\leq}(w)|$, output $Sel(S_{\leq}(w), k)$
- Else if $k \leq |S_{\leq}(w)| + |S_{=}(w)|$, output w
- Else output $Sel(S_{>}(w), k |S_{<}(w)| |S_{=}(w)|)$

How to lower bound $|S_{<}(w)|, |S_{>}(w)|$?

< **w**

•
$$|S_{<}(w)| \ge 2\left(\frac{n}{6}\right) = \frac{n}{3}$$

• $|S_{>}(w)| \ge 2\left(\frac{n}{6}\right) = \frac{n}{3}$.
 $\frac{n}{3} \le |S_{<}(w)|, |S_{>}(w)| \le \frac{2n}{3}$

So, what is the running time?

Asymptotic Running Time?

- If $k \leq |S_{\leq}(w)|$, output $Sel(S_{\leq}(w), k)$
- Else if $k \le |S_{\le}(w)| + |S_{=}(w)|$, output w
- Else output $Sel(S_>(w), k S_<(w) S_=(w))$

O(nlog n) again? So, what is the point?

Where
$$\frac{n}{3} \le |S_{\le}(w)|, |S_{>}(w)| \le \frac{2n}{3}$$

$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + O(n) \Rightarrow T(n) = O(n\log n)$$

An Improved Idea

> w

Partition into n/5 sets. Sort each set and set w = Sel(midpoints, n/10)

• $|S_{<}(w)| \ge 3\left(\frac{n}{10}\right) = \frac{3n}{10}$ • $|S_{>}(w)| \ge 3\left(\frac{n}{10}\right) = \frac{3n}{10}$ $T(n) = T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + O(n) \Rightarrow T(n) = O(n)$

An Improved Idea

```
Sel(S, k) {
   n \leftarrow |S|
   If (n < ??) return ??
   Partition S into n/5 sets of size 5
   Sort each set of size 5 and let M be the set of medians, so
|M|=n/5
   Let w=Sel(M,n/10)
                                             We can maintain each
   For i=1 to n{
      If x_i < w add x to S_<(w)
                                                 set in an array
      If x_i > w add x to S_>(w)
      If x_i = w add x to S_{=}(w)
   }
   If (k \leq |S_{\leq}(w)|)
      return Sel(S_{\leq}(w), k)
   else if (k \le |S_<(w)| + |S_=(w)|)
      return w;
   else
      return Sel (S_{>}(w), k - |S_{<}(w)| - |S_{=}(w)|)
```

}

D&C Summary

Idea:

"Two halves are better than a whole"

- if the base algorithm has super-linear complexity.
- "If a little's good, then more's better"
 - repeat above, recursively
- Applications: Many.
 - Binary Search, Merge Sort, (Quicksort),
 - Root of a Function
 - Closest points,
 - Integer multiplication
 - Median
 - Matrix Multiplication

Approximation Algorithms

How to deal with NP-complete Problem

Many of the important problems in real world are NPcomplete. SAT, Set Cover, Graph Coloring, TSP, Max IND Set, Vertex Cover, ...

So, we cannot find optimum solutions in polynomial time. What to do instead?

- Find optimum solution of special cases (e.g., random inputs)
- Find near optimum solution in the worst case

Approximation Algorithm

Polynomial-time Algorithms with a guaranteed approximation ratio.

$$\alpha = \frac{\text{Cost of computed solution}}{\text{Cost of the optimum}}$$

worst case over all instances.

Goal: For each NP-hard problem find an approximation algorithm with the best possible approximation ratio.

Vertex Cover

Given a graph G=(V,E), Find smallest set of vertices touching every edge

Greedy algorithms are typically used in practice to find a (good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most new edges

Q:Does this give an optimum solution? A: No,

n vertices. Each vertex has one edge into each B_i

Each vertex in B_i has *i* edges to top

Greedy pick bottom vertices = $n + \frac{n}{2} + \frac{n}{3} + \dots + 1 \approx n \ln n$ OPT pick top vertices = n

A Different Greedy Rule

Greedy 2: Iteratively, pick both endpoints of an uncovered edge.

Vertex cover = 6

Greedy 2: Pick Both endpoints of an uncovered edge

Greedy vertex cover = 16

OPT vertex cover = 8

Greedy (2) gives 2-approximation

Thm: Size of greedy (2) vertex cover is at most twice as big as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges $e_1, ..., e_k$. Since these edges do not touch, every valid cover must pick one vertex from each of these edges!

i.e., $OPT \ge k$.

But the size of greedy cover is 2k. So, Greedy is a 2approximation.

Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

e.g., a company wants to hire employees with certain skills.

Set Cover

Given a number of sets on a ground set of elements, Goal: choose minimum number of sets that cover all. Set cover = 4

Strategy: Pick the set that maximizes # new elements covered

Thm: Greedy has In n approximation ratio

Greedy = 5

OPT = 2

Greedy Gives O(log(n)) approximation

Thm: If the best solution has k sets, greedy finds at most k ln(n) sets.

Pf: Suppose OPT=k

There is set that covers 1/k fraction of remaining elements, since there are k sets that cover all remaining elements.

So in each step, algorithm will cover 1/k fraction of remaining elements.

#elements uncovered after t steps

$$\leq n\left(1-\frac{1}{k}\right)^t \leq ne^{-\frac{t}{k}}$$

So after $t = k \ln n$ steps, # uncovered elements < 1.