
CSE 421

Dijkstra’s Algorithm,
Divide and Conquer

Shayan Oveis Gharan

1

Boiling Water Example
Q: Given an empty bowl, how do you make boiling water?

A: Well, I fill it with water, turn on the stove, leave the bowl on
the stove for 20 minutes. I have my boiling water.

Q: Now, suppose you have a bowl of water, how do you make
boiling water?

A: First, I pour water away, now
I have an empty bowl and
I have already solved this!

2

Lesson: Never solve a problem twice!

3

Dijkstra’s Algorithm: Example

0

¥
¥

¥

¥

¥

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

¥

¥

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

¥

¥

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

¥

9

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

¥

9

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

¥

10

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

¥

10

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

20

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

20

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

19

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

19

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

18

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

18

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Disjkstra’s Algorithm: Correctness

Prove by induction that throughout the algorithm, for any ! ∈ #,

the path $% in the shortest from s to u.

Base Case: This is always true when # = ' .
IH: Suppose |#| = * and the claim holds for S

IS: Say + is the k+1-st vertex that

we add to S. Let {u,v} be last edge on $,.
If $, is not the shortest path there

is a path $ to s which is shorter.

Consider the first time that P leaves S

(with edge {x,y}).

S -> x has weight (at least) d(x)

So, - $ ≥ / 0 + -2,4 ≥ / + = - $, .
A contradiction.

v

y

u

s

x

$,

$

Remarks on Dijkstra’s Algorithm
• Algorithm also produces a tree of shortest paths to s following

Parent links
• Algorithm works on directed graph (with nonnegative weights)

• The algorithm fails with negative edge weights.
• e.g., some airline tickets

Why does it fail?

• Dijkstra’s algorithm is similar to BFS:
• Subtitute every edge with !" = $ with a path of length k, then run BFS.

Implementing Dijkstra’s Algorithm
Priority Queue: Elements each with an associated key Operations

• Insert
• Find-min

– Return the element with the smallest key

• Delete-min
– Return the element with the smallest key and delete it from the data structure

• Decrease-key
– Decrease the key value of some element

Implementations
Arrays:

• O(n) time find/delete-min,
• O(1) time insert/decrease key

Binary Heaps:
• O(log n) time insert/decrease-key/delete-min,
• O(1) time find-min

Dijkstra’s Algorithm
Runs in O((n+m)log n).

Dijkstra(G, c, s) {
foreach (v Î V) d[v] ¬ ¥ //This is the key of node v
! " ← $
foreach (v Î V) insert v onto a priority queue Q
Initialize set of explored nodes S ¬ {s}

while (Q is not empty) {
u ¬ delete min element from Q
S ¬ S È { u }
foreach (edge e = (u, v) incident to u)

if ((v Ï S) and (d[u]+ce < d[v]))
! % ← ! & + ()
Decrease key of v to d[v].
*+,)-. % ← &

}

/(1) of decrease key,
each runs in /(log 6)

/(6) of delete min,
each in O(log n)

Summary (Greedy Algorithms)

• Greedy Stays Ahead: Interval Scheduling, Dijkstra’s
algorithm

• Structural: Interval Partitioning

• Exchange Arguments: MST, Kruskal’s Algorithm, Prim’s
Algorithm

• Data Structures: Union Find, Heap

Divide and Conquer Approach

Divide and Conquer
Similar to algorithm design by induction, we reduce a

problem to several subproblems.
Typically, each sub-problem is

at most a constant fraction of
the size of the original problem

Recursively solve each subproblem
Merge the solutions

Examples:
• Mergesort, Binary Search, Strassen’s Algorithm,

Lo
g

n
le

ve
ls

n

n/2n/2

n/4

A Classical Example: Merge Sort

A

sort
recursivelySplit to n/2

merge

Why Balanced Partitioning?
An alternative "divide & conquer" algorithm:
• Split into n-1 and 1
• Sort each sub problem
• Merge them

Runtime
! " = ! " − 1 + ! 1 + "

Solution:
! " = " + ! " − 1 + ! 1

= " + " − 1 + ! " − 2
= " + " − 1 + " − 2 + ! " − 3
= " + " − 1 + " − 2 +⋯+ 1 = *(",)

D&C: The Key Idea
Suppose we've already invented Bubble-Sort, and we know
it takes !"

Try just one level of divide & conquer:

Bubble-Sort(first n/2 elements)

Bubble-Sort(last n/2 elements)

Merge results

Time: 2 $(!/2) + ! = !2/2 + ! ≪ !2
Almost twice as fast!

D&C in a
nutshell

D&C approach
• “the more dividing and conquering, the better”

• Two levels of D&C would be almost 4 times faster, 3 levels
almost 8, etc., even though overhead is growing.

• Best is usually full recursion down to a small constant size
(balancing "work" vs "overhead").

In the limit: you’ve just rediscovered mergesort!
• Even unbalanced partitioning is good, but less good

• Bubble-sort improved with a 0.1/0.9 split:
.1# $ + .9# $ + # = .82#2 + #

The 18% savings compounds significantly if you carry
recursion to more levels, actually giving *(# log #), but
with a bigger constant.

• This is why Quicksort with random splitter is good – badly
unbalanced splits are rare, and not instantly fatal.

Finding the Root of a Function

Finding the Root of a Function
Given a continuous function f and two points a < b such that

! " ≤ 0
! % ≥ 0

Find an approximate root of f (a point ' where ! ' = 0).

f has a root in [", %] by
intermediate value theorem

Note that roots of f may be irrational,
So, we want to approximate
the root with an arbitrary precision!

a b

f - = sin - − 233
4 + -

6

A Naiive Approch

Suppose we want ! approximation to a root.

Divide [a,b] into " = $%&
' intervals. For each interval check

() ≤ 0, () + ! ≥ 0

This runs in time / " = /($%&')

Can we do faster?

a b

D&C Approach (Based on Binary Search)
Bisection(a,b, e)

if ! − # < % then
return (a)

else
& ← (# + !)/2
if - & ≤ 0 then

return(Bisection(c, b, e))
else

return(Bisection(a, c, e))

a bc

Time Analysis
Let ! = #$%

&
And ' = () + +)/2
Always half of the intervals lie to
the left and half lie to the right of c

So,

/ ! = / 0
1 + 2(1)

i.e., / ! = 2(log !) = 2(log #$%&) a bc
n/2n/2

Finding the Closest Pair of Points

Closest Pair of Points (non geometric)
Given n points and arbitrary distances between them, find the
closest pair. (E.g., think of distance as airfare – definitely not
Euclidean distance!)

Must look at all n choose 2 pairwise distances, else
any one you didn’t check might be the shortest.
i.e., you have to read the whole input

(… and all the rest of the (n) edges…)2

Closest Pair of Points (1-dimension)
Given n points on the real line, find the closest pair

The input is number !", … , !% where !& is the location of i-th
point

Fact: Closest pair is adjacent in ordered list
So, first sort, then scan adjacent pairs.

Time O(n log n) to sort, Plus O(n) to scan adjacent pairs

Key point: do not need to calc distances between all pairs: exploit
geometry + ordering

Closest Pair of Points (2-dimensions)
Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems, molecular

modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points p and q with Q(n2)
time.

Assumption: No two points have same x coordinate.

Closest Pair of Points (2-dimensions)
Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems, molecular

modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points p and q with Q(n2)
time.

Assumption: No two points have same x coordinate.

A Divide and Conquer Alg
Divide: draw vertical line L with ≈ n/2 points on each

side.
Conquer: find closest pair on each side, recursively.

Combine to find closest pair overall

Return best solutions

12

21
8

L

seems like
Q(n2) ?

