Dijkstra's ALG idea: shortest path

Intuition:

\[S \rightarrow U \]

OBS \(S \rightarrow U \) is also shortest path.

(If not, we can get a smaller path to \(v \).

Main Problem: We don't know \(U \).

(If we knew it we could use induction).

I have found shortest path to all vertices in \(S \).

If I know a vertex \(x \) s.t. shortest path in \(x \) jumps from \(S \) directly to \(x \), I can find the shortest path by brute forcing over \(Y \).

\[S \rightarrow z \]

\(z \) is closest to \(S \), then shortest path to \(z \) is just \(S, z \).

For each \(x \) look at \(\min \) shortest path by \(Y \)

(Each time you look at what is the cheapest way to come out of \(S \). If it goes to \(x \), then I have already found the shortest path to \(x \).)