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Union Find Data Structure
Each set is represented as a tree of pointers, where every vertex 
is labeled with longest path ending at the vertex

To check whether A,Q are in same connected component, follow 
pointers and check if root is the same. 
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Union Find Data Structure
Merge: To merge two connected components, make the root 
with the smaller label point to the root with the bigger label 
(adjusting labels if necessary). Runs in O(1) time
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Depth vs Size
Claim: If the label of a root is k, there are at least 2" elements in 
the set. 
Therefore the depth of any tree in algorithm is at most  log n

So, we can check if #, % are in the 
same component in time &(log +)
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Depth vs Size: Correctness
Claim: If the label of a root is k, there are at least 2" elements in 
the set. 

Pf: By induction on k. 

Base Case (k = 0): this is true. The set has size 1.

IH: Suppose the claim is true until some time t
IS: If we merge roots with labels #$ > #&, the number of vertices 
only increases while the label stays the same. 
If #$ = #&, the merged tree has label #$ + 1, 

and by induction, it has at least 
2"* + 2"+ = 2"*,$

elements.



Kruskal’s Algorithm with Union Find
Implementation.  Use the union-find data structure.

• Build set ! of edges in the MST.
• Maintain a set for each connected component.
• O(m log n) for sorting and  O(m log n) for union-find

Kruskal(G, c) {
Sort edges weights so that c1 £ c2 £ ... £ cm.
" ← ∅

foreach (% ∈ ') make a set containing singleton {%}

for i = 1 to m
Let (u,v) = ei
if (u and v are in different sets) {

" ← "È {*+}
merge the sets containing % and ,

}
return "

}

Find roots and compare

Merge at the roots



Removing weight Distinction Assumption
Suppose edge weights are not distinct, and Kruskal’s algorithm 
sorts edges so 

!"# ≤ !"% ≤ ⋯ ≤ !"'
Suppose Kruskal finds tree ( of weight !((), but the optimal 
solution (∗ has cost ! (∗ < ! ( .

Perturb each of the weights by a very small amount so that
!"#. < !"%. < ⋯ ≤ !"'.

If the perturbation is small enough, !. (∗ < !((). 
However, this contradicts the correctness of Kruskal’s algorithm, 
since the algorithm will still find (, and Kruskal’s algorithm is 
correct if all weights are distinct.



Single Source Shortest Path

Given an (un)directed graph 
G=(V,E) with  non-negative
edge weights !" ≥ 0
and a start vertex s

Find length of shortest paths 
from s to each vertex in G

UW

Amazon



Dijkstra’s Algorithm
Maintain a set S of vertices whose shortest paths are known
• initially S={s}

Maintaining current best lengths of paths that only go 
through S to each of the vertices in G

• Path-lengths to elements of S will be right,  to V-S they 
might not be right

Repeatedly add vertex v to S that has the shortest path-
length of any vertex in V-S

• Update path lengths based on new paths through v



Dijkstra’s Algorithm

Dijkstra(G, c, s) {
foreach (v Î V) d[v] ¬ ¥ //This is the key of node v
! " ← $
foreach (v Î V) insert v onto a priority queue Q
Initialize set of explored nodes S ¬ {s}

while (Q is not empty) {
u ¬ delete min element from Q
S ¬ S È { u }
foreach (edge e = (u, v) incident to u)

if ((v Ï S) and (d[u]+ce < d[v]))
! % ← ! & + ()
Decrease key of v to d[v].
*+,)-. % ← &

}



Dijkstra’s Algorithm: Example
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Disjkstra’s Algorithm: Correctness

Prove by induction that throughout the algorithm, for any ! ∈ #, 

the path $% in the shortest from s to u.

Base Case: This is always true when # = ' .
IH: Suppose |#| = * and the claim holds for S

IS: Say + is the k+1-st vertex that 

we add to S. Let {u,v} be last edge on $,.
If $, is not the shortest path there 

is a path $ to s which is shorter. 

Consider the first time that P leaves S

(with edge {x,y}). 

S -> x has weight (at least) d(x)

So, - $ ≥ / 0 + -2,4 ≥ / + = - $, .
A contradiction.

v

y

u

s

x

$,

$


