Lem: Suppose the label of a root is \(k \). There are at least \(2^k \) nodes in that component/subtree.

Pf. At step \(j \) of ALG, any tree has \(\geq 2^{\text{label-root}} \) nodes.

Base: At step 0, all nodes are single comp \(\Rightarrow 1 \) node.

I.H. Suppose at step \(j \). For any tree we have at least \(2^{\text{label-root}} \) nodes in subtree.

I.S. Show it at step \(j+1 \).

Merge \(T_a, T_b \).

By I.H \(T_a \) has \(\geq 2^a \) nodes
\(T_b \) has \(\geq 2^b \) nodes.

Case 1: \(a > b \) bar points to \(a \), no update on labels. New tree has
\(\geq 2^a \cdot 2^b \geq 2^{a+b} \) nodes.

Case 2: \(a = b \).

Increase \(b \) by 1.

New tree has \(\geq 2^a \cdot 2^{b+1} = 2^{a+b+1} \) nodes.