
CSE421: Design and Analysis of Algorithms April 24, 2019

Lecturer: Shayan Oveis Gharan Lecture 11 Union Find, Edge Distinct Properties

1 The Union-Find Data Structure

To efficiently implement Kruskal’s algorithm, we need to avoid looking for cycles every time. In-
stead, we shall think of the algorithm as maintaining a set of connected components. In each step,
it tries to use an edge to merge two connected components. To store a connected component, we
shall use nodes that represent each vertex.

Initialize: Set P (v) ← v and L(v) ← 0 for all vertices v
Function Find(x)

while P (x) ∕= x do
x ← P (x)

end
Output x

Function Merge(x,y)
rx ← Find(x)
ry ← Find(y)
if L(rx) ≥ L(ry) then

P (ry) ← rx
If L(rx) = L(ry), set L(rx) ← L(rx) + 1

end
else

P (rx) ← ry
end

In order to run the algorithm efficiently, we need a data structure that can maintain the con-
nected components of the graph. We do this using the following data structure. The set of connected
components will be maintained using a directed rooted tree where every vertex has out-degree 1
except the root. The connected components will be represented by the root of each tree, so two
vertices x, y are in the same component if and only if the root of their trees are the same (In the
above algorithm this corresponds to Find(x) = Find(y). To merge the components of x, y we
simply call Merge(x, y).

For every vertex u, we write L(u) to denote the length of the longest path that ends at u. So,
for a root r, L(r) is the depth of the tree rooted at r. To merge two components with roots rx, ry,
if L(rx) > L(ry) we make ry point to rx. Similarly, if L(ry) > L(rx) we make rx point to ry. If
L(rx) = L(ry) we make an arbitrary choice, say ry points to rx, and then increase L(rx) by 1. The
following claim implies that any find operation runs in time O(log n).

Claim 1. For every vertex v, L(v) ≤ log n.

11 Union Find, Edge Distinct Properties-1



Proof We prove by induction that if the root of a component satisfies L(r) = k, then the
corresponding component has at least 2k nodes. Thus if L(r) > log n for some node r, then the
corresponding component will have more than n nodes, which is a contradiction. We induct on the
time.

Base Case: At the beginning all components satisfy L(v) = 0 and they all have a single node
(20 = 1).

IH: Suppose the claim holds up to some time t.
IS: If at time t+1 we call Find(x, y) it will not change any tree. So, suppose we callMerge(x, y).

So, we merge the trees of rx, ry. If L(rx) ∕= L(ry) then L(.) of the new root does not increase, during
the merge so the conclusion follows immediately. Otherwise, we have L(rx) = L(ry). Say both of
them are equal to k. In this case, by IH, we know that the tree of rx has at least 2k nodes and the
tree of ry has at least 2k nodes. So, the new tree has at least 2k + 2k = 2k+1 nodes. So, we can
rightfully increase L(.) of the new root by 1.

2 Removing Weight Distinction Assumption

So far, in the description of Kruskal’s algorithm, we assumed that edge weights are distinct.
In this section we see that even if the edge weights are not distinct still, the Kruskal’s algorithm

will give us a MST. Note that if the edge weights are not distinct there could be multiple MSTs,
and we are only going to find one of them by Kruskal’s algorithm.

Claim 2. Suppose the edge weights are not distinct. Kruskal’s algorithm still gives us an MST.

Proof Note that in the proof we can no longer use the Cycle and Cut properties, because these
properties only hold/proven when the edge weights are distinct.

Suppose the edge weights are not distinct. Kruskal’s algorithm sorts the edges such that

ce1 ≤ ce2 ≤ · · · ≤ cem

and then finds a tree based on this order. Suppose T is the output of the algorithm. For the sake
of contradiction, assume that T is not an MST, then there is a tree T ∗, such that c(T ∗) < c(T ).

Perturb the weights of the edges such that all of the above inequalities are strict, i.e.,

c′e1 < c′e2 < · · · < c′em .

In particular, define c′ei = cei + i · 󰂃 for a very very small 󰂃 > 0.

Fact 3. Since the ordering does not change, still T will be the output of the Kruskal’s algorithm.

Fact 4. Because the edge weights are distinct the output of Kruskal’s algorithm is the optimum
tree.

Now, if 󰂃 is very small, much smaller than (c(T ) − c(T ∗))/m2, we have c′(T ∗) < c′(T ) This is
because

c′(T ∗) ≤ c(T ∗) + 󰂃+ 2󰂃+ · · ·+m󰂃 ≤ m2󰂃, and,

c′(T ) ≥ c(T ).

Therefore, c′(T ∗) < c′(T ), i.e., Kruskal’s algorithm does not output the MST for the edge
weights c′ which are distinct. But this contradicts Fact 4. Contradiction! Therefore, T is an MST
with respect to original weights c as well.

11 Union Find, Edge Distinct Properties-2


