Greedy Alg: Minimum Spanning Tree

Shayan Oveis Gharan
Minimum Spanning Tree (MST)

Given a connected graph $G = (V, E)$ with real-valued edge weights c_e, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

$G = (V, E)$

$c(T) = \sum_{e \in T} c_e = 50$
Cuts

In a graph $G = (V, E)$ a cut is a bipartition of V into sets $S, V - S$ for some $S \subseteq V$. We show it by $(S, V - S)$.

An edge $e = \{u, v\}$ is in the cut $(S, V - S)$ if exactly one of u, v is in S.

OBS. G is connected \iff E is in every cut $(S, V - S)$.
Properties of the OPT

Simplifying assumption: All edge costs c_e are distinct.

Cut property: Let S be any subset of nodes (called a cut), and let e be the \textit{min} cost edge with exactly one endpoint in S. Then every MST contains e.

Cycle property. Let C be any cycle, and let f be the \textit{max} cost edge belonging to C. Then no MST contains f.

\begin{itemize}
 \item \textcolor{red}{red edge} is in the MST
 \item \textcolor{green}{Green edge} is not in the MST
\end{itemize}
Cycles and Cuts

Claim. A cycle crosses a cut (from S to V-S) an even number of times.

Pf. (by picture)
Cut Property: Proof

Simplifying assumption: All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the T^* contains e.

Pf. By contradiction

Suppose $e = \{u,v\}$ does not belong to T^*. Adding e to T^* creates a cycle C in T^*. There is a path from u to v in T^*, there exists another edge, say f, that leaves S.

$T = T^* \cup \{e\} - \{f\}$ is also a spanning tree.

Since $c_e < c_f$, $c(T) < c(T^*)$.

This is a contradiction.
Cycle Property: Proof

Simplifying assumption: All edge costs c_e are distinct.

Cycle property: Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^* does not contain f.

Pf. (By contradiction)
Suppose f belongs to T^*.
Deleting f from T^* cuts T^* into two connected components. There exists another edge, say e, that is in the cycle and connects the components.

$$T = T^* \cup \{e\} - \{f\}$$ is also a spanning tree.
Since $c_e < c_f$, $c(T) < c(T^*)$.
This is a contradiction.
Kruskal’s Algorithm [1956]

Kruskal(G, c) {
 Sort edges weights so that \(c_1 \leq c_2 \leq \ldots \leq c_m \).
 \(T \leftarrow \emptyset \)

 foreach \(u \in V \) make a set containing singleton \{u\}

 for \(i = 1 \) to \(m \)
 Let \((u,v) = e_i \)
 if (u and v are in different sets) {
 \(T \leftarrow T \cup \{e_i\} \)
 merge the sets containing u and v
 }
 return \(T \)
}
Kruskal’s Algorithm: Pf of Correctness

Consider edges in ascending order of weight.

Case 1: If adding e to T creates a cycle, discard e according to cycle property.

Case 2: Otherwise, insert $e = (u, v)$ into T according to cut property where $S =$ set of nodes in u's connected component.
Implementation: Kruskal’s Algorithm

Implementation. Use the **union-find** data structure.

- Build set T of edges in the MST.
- Maintain a set for each connected component.
- $O(m \log n)$ for sorting and $O(m \log n)$ for union-find

```plaintext
Kruskal(G, c) {
    Sort edges weights so that $c_1 \leq c_2 \leq \ldots \leq c_m$.
    $T \leftarrow \emptyset$
    
    foreach ($u \in V$) make a set containing singleton \{u\}
    
    for i = 1 to m
        Let $(u,v) = e_i$
        if (u and v are in different sets) {
            $T \leftarrow T \cup \{e_i\}$
            merge the sets containing u and v
        }
    return $T$
}
```
Union Find Data Structure

Each set is represented as a tree of pointers, where every vertex is labeled with longest path ending at the vertex.

To check whether A, Q are in same connected component, follow pointers and check if root is the same.
Union Find Data Structure

Merge: To merge two connected components, make the root with the smaller label point to the root with the bigger label (adjusting labels if necessary). Runs in $O(1)$ time.

At most one label must be adjusted.
Depth vs Size

Claim: If the label of a root is k, there are at least 2^k elements in the set. Therefore the depth of any tree in algorithm is at most $\log n$.

So, we can check if u,v are in the same component in time $O(\log n)$.
Depth vs Size: Correctness

Claim: If the label of a root is k, there are at least 2^k elements in the set.

Pf: By induction on k.

Base Case (k = 0): this is true. The set has size 1.

IH: Suppose the claim is true until some time t

IS: If we merge roots with labels $k_1 > k_2$, the number of vertices only increases while the label stays the same.

If $k_1 = k_2$, the merged tree has label $k_1 + 1$, and by induction, it has at least

$$2^{k_1} + 2^{k_2} = 2^{k_1+1}$$

elements.
Kruskal’s Algorithm with Union Find Implementation. Use the union-find data structure.

- Build set T of edges in the MST.
- Maintain a set for each connected component.
- $O(m \log n)$ for sorting and $O(m \log n)$ for union-find

```python
Kruskal(G, c) {
    Sort edges weights so that $c_1 \leq c_2 \leq \ldots \leq c_m$.
    $T \leftarrow \emptyset$

    foreach $(u \in V)$ make a set containing singleton $\{u\}$

    for $i = 1$ to $m$
        Let $(u,v) = e_i$
        if $(u$ and $v$ are in different sets) {
            $T \leftarrow T \cup \{e_i\}$
            merge the sets containing $u$ and $v$
        }
    return $T$
}
```
Removing weight Distinction Assumption

Suppose edge weights are not distinct, and Kruskal’s algorithm sorts edges so

\[c_{e_1} \leq c_{e_2} \leq \cdots \leq c_{e_m} \]

Suppose Kruskal finds tree \(T \) of weight \(c(T) \), but the optimal solution \(T^* \) has cost \(c(T^*) < c(T) \).

Perturb each of the weights by a very small amount so that

\[c_{e_1}' < c_{e_2}' < \cdots \leq c_{e_m}' \]

If the perturbation is small enough, \(c'(T^*) < c(T) \).

However, this contradicts the correctness of Kruskal’s algorithm, since the algorithm will still find \(T \), and Kruskal’s algorithm is correct if all weights are distinct.