Len, Fix a cut
$$(S,V-S)$$
. If e is the smallest edge
in this cut, it must belong to all MSTs.
Pf. (By contradiction[].
If T* (MST) s.t. $e \notin T^*$.
Supp $f \in T^*$ such that $f \in (S, V-S)$.
 $\Rightarrow Ce < Cq$.
Sump e with $f, T'=T^*-f+e$ has smaller cost
We need to show T' is a spanning tree.
N-1 edges V
 $f = V-S$
 $f = T^* g+e$ that makes a cycle G.
C crosses $(S,V-S)$ even # times=> $fg \in G$ $(g \neq e)$, s.t. $g \in (S,V-S)$
From assumption on $e, Ce < Cq$. $T'=T^* g+e$.
 T' has smaller cost.
Ne need to show T' is a tree. $n-1$ edges V
connectulares: T+e is connected, so by remains on edge from Cycle C
 $T'=T^* e-g$ remains connected => T' is a tree. A contradiction f.
Lem Let e be logest tobse in a cycle C $\Rightarrow e \notin T^*$ (hor any T*AST).
 F_{emore} e from $T^* = re get observated
 $S = T^* e$ has no edge in cut $(S,V-S)$$

e is the unique edge of
$$T^{\dagger}$$
 in $(S, V-S)$ (S) (V-3)
C crosses $(S, V-S)$ even # times => $\exists g \in G'$ s.t. $g \neq e$ and $g \in (S, V-S)$.
Define $T' = T - e \neq g$. $C(T') \subset C(T)$ BC $C \in \mathcal{F} \subset g$.
We need to show T' is a tree.
 $n-1$ edges V
 T' is acyclic. $T^{*}_{-e} = acyclic.$
if $T^{*}_{-e \neq g}$ has a cycle g must be in it.
But that is not possible BC g is the unique edge in (S, V_S)
and any cycle containing g must cross this cat χ_{2} time
 S_{0} T' is a tree => a contradiction!

