P1)

P2)

P3)

P4)

P5)

CSE421: Design and Analysis of Algorithms May 9, 2019

Homework 5
Shayan Oveis Gharan Due: May 16, 2019 at 5:00 PM

Suppose you are working in the quality control of a factory. The factory produces quarters
for the US government and your job is to make sure that all quarters have exactly the same
weight. You are given 2* quarters for & > 2 and you know that at most one of them can be
defective. A defective quarter will weight higher or lower than normal. You are given a scale

with two trays: Each time you can put a set S of quarters in the left and a set T in the right
(for disjoints sets S,T"). The scale will show if S is heavier than T', or T is heavier than S,
or they have exactly the same weight. Design an algorithm to find the defective quarter (if
it exists) by using the scale only O(k) many times. (Note that your algorithm will run by a
human not a compute.)

Let G be a graph with maximum degree k. Recall that a set S of vertices of G form an
independent set if there is no edges between vertices of S. Design a polynomial time O(k)
approximation algorithm for the maximum independent set problem, i.e., the size of the inde-
pendent set that your algorithm outputs must be at least 1/0O(k) fraction of the optimum.

Consider an array ay, ..., a, of n integers, that is hidden from us. We have access to this array
through an oracle knapsack(.,.). For a set S C {1,...,n} and an integer k, knapsack(S, k)
will output “yes” if there is a subset T" C S such that the numbers indexed in T add up to k,
i.e., > ier @i = k and it will output “no” otherwise. Design an algorithm that calls knapsack
only O(n) times and outputs a set S C {1,...,n} such that the numbers indexed in S add up
to k, if such a set exists.

For example, suppose a; = 2,a2 = 4,a3 = 3,a4 = 1, and k = 7. Then, knapsack({1,2,3,4},7)
returns “yes” and knapsack({1, 3,4}, 7) returns “no”. In this case your algorithm can output
either of the sets {1,2,4} or {2,3}.

Draw the dynamic programming table of the following instance of the knapsack problem: You
are 6 items with weight 1,2,3,6,7,9 and value 1,3,5,12, 18,25 respectively and the size of
your knapsack is 13..

Suppose you are given n coins with value vy, ..., v, dollars, and you want to change S dollars.
You can assume v; # v; for all 7 # j. Design a polynomial time algorithm that outputs the
number of ways to change S dollars with the given n coins. For example, if for values 1,2, 3,4
we can change 6 with in 2 ways as follows:

24+4,14+2+3

5-1



