
CSE421: Design and Analysis of Algorithms April 25, 2019

Homework 4

Shayan Oveis Gharan Due: May 2, 2019 at 5:00 PM

P1) Prove or disprove the following claim: Suppose we are given a graph G where the cost of edge
e is ce where all ce’s are positive. For simplicity, assume that all ce’s are distinct. Suppose T
is the minimum spanning tree which is the output of the Kruskal’s algorithm. Now suppose
we update the cost of every edge e to c2e. Then, T remains the minimum spanning tree of
G. For example, in the following graph the tree shown in blue is the output of the Kruskal’s
algorithm. In this case if we update the costs to 1, 4, 9 respectively the blue tree remains a
minimum spanning tree.

2

1 3

P2) Consider the following variant of the shortest path problem: Suppose we are given a weighted
connected undirected graph G and a source vertex s. For simplicity you can assume all ce’s
are different and positive. Define the bottleneck of a path P from s to v to be the cost
of the maximum edge along this path. Design a polynomial time algorithm that outputs the
bottleneck of minimum bottleneck path from s to all vertices ofG. For example, in the following
graph, the bottleneck of the minimum bottleneck from s to a is s, b, c, a with bottleneck 3, to
b is s, b with bottleneck 2 and to c is s, b, c with bottleneck also 2. So, you can just output
3, 2, 2.

s a
4

b

2

c

5

1

3

P3) Suppose you are choosing between the following three algorithms:

a) Algorithm A solves the problem by dividing it into six subproblems of half the size, recur-
sively solves each subproblem, and then combines the solution in linear time.

b) Algorithm C solves the problem by dividing it into sixteen subproblems of one fourth the
size, recursively solves each subproblem, and then combines the solutions in quadratic time.

c) Algorithm B solves problems of size n by recursively solving two subproblems of size n− 3,
and then combines the solution in constant time.

What are the running times of each of these algorithms? To receive full credit, it is enough to
write down the running time.

4-1



P4) Suppose there is a list of n integers x0, . . . , xn−1 hidden from us, and n is a power of 2. We
have access to this list through an oracle, A. For every integer 0 ≤ k < n and any power
of two, say 2a, we can ask the oracle A(k, 2a) and it will spit out sum of the numbers in the
interval [k, k+2a−1], i.e.,

󰁓k+2a−1
i=k xi. Design an algorithm that given a, b outputs sum of the

numbers in the interval [a, b− 1] and makes at most O(log n) calls to the oracle. For example,
for n = 16, and a = 3, b = 9 your algorithm can just output A(8, 1)+A(0, 8)−A(0, 2)−A(2, 1).
This works because

A(8, 1) = x8

A(0, 8) = x0 + x1 + · · ·+ x7

A(0, 2) = x0 + x1,

A(2, 1) = x2.

P5) Extra Credit The spanning tree game is a 2-player game. Each player in turn selects an
edge. Player 1 starts by deleting an edge, and then player 2 fixes an edge (which has not been
deleted yet); an edge fixed cannot be deleted later on by the other player. Player 2 wins if he
succeeds in constructing a spanning tree of the graph; otherwise, player 1 wins.

The question is which graphs admit a winning strategy for player 1 (no matter what the other
player does), and which admit a winning strategy for player 2.

Show that player 1 has a winning strategy if and only if G does not have two edge-disjoint
spanning trees. Otherwise, player 2 has a winning strategy.

4-2


