

Announcements

- Final exam,
- Monday, December 9, 2:30-4:20 pm
- Comprehensive ($2 / 3$ post midterm, $1 / 3$ pre midterm)
- Old finals / answers on course website
- Material covered in lecture
- Kleinberg, Tardos, Sections 1.1-8.10
- Unlikely to be on the exam
- 2.5, 4.8, 5.6, 6.9, 7.3, 7.4, 7.13, 8.9

Coping with NP-Completeness

- Approximation Algorithms
- Exact solution via Branch and Bound
- Local Search

Highest level first is 2-Optimal

Choose k items on the highest level
Claim: number of rounds is at least twice the optimal.

Multiprocessor Scheduling

- Unit execution tasks
- Precedence graph
- K-Processors
- Polynomial time for k=2
- Open for $k=$ constant

- NP-complete is k is part of the problem

Christofides TSP Algorithm

- Undirected graph satisfying triangle inequality

1. Find MST
2. Find MST
3. Add additional edges so that all
4. Add additionare have even degree
5. Build Eulerian Tour

3/2 Approximation

First Fit Packing

- First Fit

- Theorem: $\mathrm{FF}(\mathrm{I})$ is at most $17 / 10 \operatorname{Opt}(\mathrm{I})+2$
- First Fit Decreasing
- Theorem: FFD(I) is at most 11/9 Opt (I) + 4

Bin Packing

- Given N items with weight w_{i}, pack the items into as few unit capacity bins as possible
- Example: .3, .3, .3, .3, .4, . 4

Branch and Bound

- Brute force search - tree of all possible solutions
- Branch and bound - compute a lower bound on all possible extensions
- Prune sub-trees that cannot be better than optimal

Local Optimization

- Improve an optimization problem by local improvement
- Neighborhood structure on solutions
- Travelling Salesman 2-Opt (or K-Opt)
- Independent Set Local Replacement

What we don't know

- P vs. NP

If $P!=N P$, is there anything in between

- Yes, Ladner [1975]
- Problems not known to be in P or NP Complete
- Factorization
- Discrete Log Solve $\mathrm{g}^{*}=$ b overa finite group
- Graph Isomorphism

Time complexity

- P: (Deterministic) Polynomial Time
- NP: Non-deterministic Polynomial Time
- EXP: Exponential Time

Space Complexity

- Amount of Space (Exclusive of Input)
- L: Logspace, problems that can be solved in $O(\log n)$ space for input of size n
- Related to Parallel Complexity
- PSPACE, problems that can be required in a polynomial amount of space

So what is beyond NP?

NP vs. Co-NP

- Given a Boolean formula, is it true for some choice of inputs
- Given a Boolean formula, is it true for all choices of inputs

Problems beyond NP

- Exact TSP, Given a graph with edge lengths and an integer K , does the minimum tour have length K
- Minimum circuit, Given a circuit C , is it true that there is no smaller circuit that computes the same function a C

Polynomial Hierarchy

- Level 1
$-\exists \mathrm{X}_{1} \Phi\left(\mathrm{X}_{1}\right), \forall \mathrm{X}_{1} \Phi\left(\mathrm{X}_{1}\right)$
- Level 2
$-\forall \mathrm{X}_{1} \exists \mathrm{X}_{2} \Phi\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right), \exists \mathrm{X}_{1} \forall \mathrm{X}_{2} \Phi\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$
- Level 3
$-\forall \mathrm{X}_{1} \exists \mathrm{X}_{2} \forall \mathrm{X}_{3} \Phi\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right), \exists \mathrm{X}_{1} \forall \mathrm{X}_{2} \exists \mathrm{X}_{3} \Phi\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)$

Polynomial Space

- Quantified Boolean Expressions
$-\exists X_{1} \forall X_{2} \exists X_{3} \ldots \exists X_{n-1} \forall X_{n} \Phi\left(X_{1}, X_{2}, X_{3} \ldots X_{n-1} X_{n}\right)$
- Space bounded games
- Competitive Facility Location Problem
$-\mathrm{N} \times \mathrm{N}$ Chess
- Counting problems
- The number of Hamiltonian Circuits

PSpaceComplete

