

Announcements

- Homework 10, Due Friday, 1:30 PM
- · Final exam,
 - Monday, December 9, 2:30-4:20 pm
 - Comprehensive (2/3 post midterm, 1/3 pre midterm)
 - Old finals / answers on home page

XC3 <_P SUBSET SUM

Idea: Represent each set as a bit vector, then interpret the bit vectors as integers. Add them up to get the all one's vector.

 $\{x_3, \, x_5, \, x_9\} => 001010001000$

Does there exist a subset that sums to exactly 11111111111?

Annoying detail: What about the carries?

Integer Linear Programming

- Linear Programming maximize a linear function subject to linear constraints
- Integer Linear Programming require an integer solution
- NP Completeness reduction from 3-SAT
 Use 0-1 variables for x,'s

Constraint for clause $x_1 \lor x_2 \lor x_3$

 $x_1 + (1 - x_2) + (1 - x_3) > 0$

Scheduling with release times and deadlines

- Tasks T_1, \ldots, T_n with release time $r_i,$ deadline $d_i,$ and work w_i
- Reduce from Subset Sum
 - Given natural numbers w₁,..., w_n and a target number K, is there a subset that adds up to exactly K?
 Suppose the sum w₁+...+ w_n = W
- Task T_i has release time 0 and deadline W+1
- Add an additional task with release time K, deadline K+1 and work 1