CSE 421
Algorithms
Richard Anderson
Lecture 27
NP-Completeness

NP Completeness: The story so far

Background
- P: Class of problems that can be solved in polynomial time
- NP: Class of problems that can be solved in non-deterministic polynomial time
- Y is Polynomial Time Reducible to X
 - Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X
 - Notation: $Y \leq_P X$
- Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time
- A problem X is NP-complete if
 - X is in NP
 - For every Y in NP, $Y \leq_P X$
- If X is NP-Complete, Z is in NP and $X \leq_P Z$
 - Then Z is NP-Complete

Cook’s Theorem
- The Circuit Satisfiability Problem is NP-Complete
- Circuit Satisfiability
 - Given a boolean circuit, determine if there is an assignment of boolean values to the input to make the output true

Proof of Cook’s Theorem
- Reduce an arbitrary problem Y in NP to X
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable
Today

There are a whole bunch of other important problems which are NP-Complete

Satisfiability

Literal: A Boolean variable or its negation. \(x_i \) or \(\overline{x_i} \)
Clause: A disjunction of literals. \(C_i = x_i \lor \overline{x_i} \lor x_j \)

Conjunctive normal form: A propositional formula \(\Phi \) that is the conjunction of clauses.
\(\Phi = C_1 \land C_2 \land C_3 \land C_4 \)

SAT: Given CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Example:
\((\overline{x_2} \lor x_5 \lor x_6) \land (x_1 \lor \overline{x_3} \lor x_4) \land (x_3 \lor \overline{x_5}) \land (\overline{x_4} \lor \overline{x_3}) \)

Yes: \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false} \).

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.

Proof. Sufficient to show that CIRCUIT-SAT \(\leq_p \) 3-SAT since 3-SAT is in NP.

- Let \(K \) be any circuit.
- Create a 3-SAT variable \(x_i \) for each circuit element \(i \).
- Make circuit compute correct values at each node:
 - \(x_i = \overline{x_i} \Rightarrow \text{add 2 clauses}: x_i \lor x_j, x_i \lor x_k \)
 - \(x_i = x_j \Rightarrow \text{add 3 clauses}: x_i \lor x_j, x_j \lor x_k, x_i \lor x_k \)
 - \(x_i = x_j \Rightarrow \text{add 3 clauses}: x_i \lor x_j, x_i \lor x_k, x_i \lor x_k \)
- Hard-coded input values and output value.
 - \(x_0 = \text{false} \Rightarrow \text{add 1 clause}: \overline{x_0} \)
 - \(x_0 = \text{true} \Rightarrow \text{add 1 clause}: x_0 \)
- Final step: turn clauses of length < 3 into clauses of length exactly 3.

3 Satisfiability Reduces to Independent Set

Claim. 3-SAT \(\leq_p \) INDEPENDENT-SET.

Proof. Given an instance \(\Phi \) of 3-SAT, we construct an instance \((G, k)\) of INDEPENDENT-SET that has an independent set of size \(k \) if \(\Phi \) is satisfiable.

Construction:
- \(G \) contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

\[\Phi = (x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \land (x_7 \lor x_8 \lor x_9) \]

k = 3
3 Satisfiability Reduces to Independent Set

Claim. \(G \) contains independent set of size \(k = |\phi| \) if \(\phi \) is satisfiable.

Pt. Let \(S \) be independent set of size \(k \).

- \(S \) must contain exactly one vertex in each triangle.
- Set these literals to true.
- Truth assignment is consistent and all clauses are satisfied.

Pf. Given satisfying assignment, select one true literal from each triangle. This is an independent set of size \(k \).

Vertex Cover

- **Vertex Cover**
 - Graph \(G = (V, E) \), a subset \(S \) of the vertices is a vertex cover if every edge in \(E \) has at least one endpoint in \(S \).

IS \(\leq_p \) VC

- **Lemma:** A set \(S \) is independent iff \(V - S \) is a vertex cover

- To reduce IS to VC, we show that we can determine if a graph has an independent set of size \(K \) by testing for a Vertex cover of size \(n - K \).

Clique

- **Clique**
 - Graph \(G = (V, E) \), a subset \(S \) of the vertices is a clique if there is an edge between every pair of vertices in \(S \).

Complement of a Graph

- **Defn:** \(G' = (V, E') \) is the complement of \(G = (V, E) \) if \((u, v) \) is in \(E' \) iff \((u, v) \) is not in \(E \).
IS \leq_p Clique

- Lemma: S is Independent in G iff S is a Clique in the complement of G
- To reduce IS to Clique, we compute the complement of the graph. The complement has a clique of size K iff the original graph has an independent set of size K

Hamiltonian Circuit Problem

- Hamiltonian Circuit – a simple cycle including all the vertices of the graph

Thm: Hamiltonian Circuit is NP Complete

- Reduction from 3-SAT

Traveling Salesman Problem

- Given a complete graph with edge weights, determine the shortest tour that includes all of the vertices (visit each vertex exactly once, and get back to the starting point)

Thm: HC \leq_p TSP

Graph Coloring

- NP-Complete
 - Graph K-coloring
 - Graph 3-coloring
- Polynomial
 - Graph 2-Coloring