

P: Class of problems that can be solved in polynomial time NP: Class of problems that can be solved in non-deterministic polynomial time Y is Polynomial Time Reducible to X Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X Notation: Y <_p X Suppose Y <_p X. If X can be solved in polynomial time, then Y can be solved in polynomial time A problem X is NP-complete if X is in NP

- For every Y in NP, $Y <_P X$
- If X is NP-Complete, Z is in NP and $X <_P Z$
- Then Z is NP-Complete

Cook's Theorem

- The Circuit Satisfiability Problem is NP-Complete
- Circuit Satisfiability
 - Given a boolean circuit, determine if there is an assignment of boolean values to the input to make the output true

- Reduce an arbitrary problem Y in NP to X
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable

IS <_P VC
Lemma: A set S is independent iff V-S is a vertex cover
To reduce IS to VC, we show that we can determine if a graph has an independent set of size K by testing for a Vertex cover of size n - K

IS <_P Clique

- Lemma: S is Independent in G iff S is a Clique in the complement of G
- To reduce IS to Clique, we compute the complement of the graph. The complement has a clique of size K iff the original graph has an independent set of size K

Hamiltonian Circuit Problem

• Hamiltonian Circuit – a simple cycle including all the vertices of the graph

Thm: Hamiltonian Circuit is NP Complete • Reduction from 3-SAT

