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NP Completeness:

The story so far

Circuit Satisfiability is 

NP-Complete



Background

• P: Class of problems that can be solved in polynomial time

• NP: Class of problems that can be solved in non-deterministic 
polynomial time

• Y is Polynomial Time Reducible to X
– Solve problem Y with a polynomial number of computation steps 

and a polynomial number of calls to a black box that solves X

– Notation: Y <P X

• Suppose Y <P X.  If X can be solved in polynomial time, then 
Y can be solved in polynomial time

• A problem X is NP-complete if 
– X is in NP

– For every Y in NP,  Y <P X

• If X is NP-Complete, Z is in NP and X <P Z
– Then Z is NP-Complete



Cook’s Theorem

• The Circuit Satisfiability Problem is NP-

Complete

• Circuit Satisfiability

– Given a boolean circuit, determine if there is 

an assignment of boolean values to the input 

to make the output true
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Proof of Cook’s Theorem

• Reduce an arbitrary problem Y in NP to X

• Let A be a non-deterministic polynomial 

time algorithm for Y

• Convert A to a circuit, so that Y is a Yes 

instance iff and only if the circuit is 

satisfiable



Today

There are a whole bunch of 

other important problems 

which are NP-Complete



Populating the NP-Completeness 

Universe
• Circuit Sat <P 3-SAT

• 3-SAT <P Independent Set

• 3-SAT <P Vertex Cover

• Independent Set <P Clique

• 3-SAT <P Hamiltonian Circuit

• Hamiltonian Circuit <P Traveling Salesman

• 3-SAT <P Integer Linear Programming

• 3-SAT <P Graph Coloring

• 3-SAT <P Subset Sum

• Subset Sum <P Scheduling with Release times and 
deadlines

NP-Complete

NP

P



Ex: 

Yes:  x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form:  A propositional

formula  that is the conjunction of clauses.

SAT:  Given CNF formula , does it have a satisfying truth assignment?

3-SAT:  SAT where each clause contains exactly 3 literals.

Satisfiability

  



C j  x1  x2  x3

  



xi   or  xi

  



   C1C2  C3 C4



x1  x2  x3   x1  x2  x3   x2  x3   x1  x2  x3 



3-SAT is NP-Complete

Theorem.  3-SAT is NP-complete.

Pf.  Suffices to show that CIRCUIT-SAT  P 3-SAT since 3-SAT is in NP.

– Let K be any circuit.

– Create a 3-SAT variable xi for each circuit element i.

– Make circuit compute correct values at each node:

• x2 =  x3  add 2 clauses:

• x1 = x4  x5    add 3 clauses:

• x0 = x1  x2    add 3 clauses:

– Hard-coded input values and output value.

• x5 = 0   add 1 clause:

• x0 = 1   add 1 clause:

– Final step:  turn clauses of length < 3 into

clauses of length exactly 3.  ▪






0 ? ?

output

x0

x2x1

  



x2  x3  , x2  x3



x1 x4 , x1 x5  ,  x1 x4  x5



x0  x1 , x0  x2 , x0  x1  x2

x3x4x5

  



x5

  



x0



Independent Set

• Independent Set

– Graph G = (V, E), a subset S of the vertices is 

independent if there are no edges between 

vertices in S
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3 Satisfiability Reduces to 

Independent Set
Claim.  3-SAT  P INDEPENDENT-SET.

Pf.  Given an instance  of 3-SAT, we construct an instance (G, k) of INDEPENDENT-

SET that has an independent set of size k iff  is satisfiable.

Construction.

– G contains 3 vertices for each clause, one for each literal.

– Connect 3 literals in a clause in a triangle.

– Connect literal to each of its negations.

  



x2

  



    x1  x2  x3   x1  x2  x3   x1  x2  x4 

  



x3

  



x1

  



x1   



x2   



x4

  



x1  



x2

  



x3

k = 3

G



3 Satisfiability Reduces to 

Independent Set
Claim.  G contains independent set of size k = || iff  is satisfiable.

Pf.   Let S be independent set of size k.

– S must contain exactly one vertex in each triangle.

– Set these literals to true.

– Truth assignment is consistent and all clauses are satisfied.

Pf   Given satisfying assignment, select one true literal from each triangle. This is an 

independent set of size k.  ▪

  



x2   



x3

  



x1

  



x1   



x2   



x4

  



x1  



x2

  



x3

k = 3

G

and any other variables in a consistent way

  



    x1  x2  x3   x1  x2  x3   x1  x2  x4 



Vertex Cover

• Vertex Cover

– Graph G = (V, E), a subset S of the vertices is 

a vertex cover if every edge in E has at least 

one endpoint in S
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IS <P VC

• Lemma: A set S is independent iff V-S is a 

vertex cover

• To reduce IS to VC, we show that we can 

determine if a graph has an independent 

set of size K by testing for a Vertex cover 

of size n - K



IS <P VC

1

3

2

6 7

4 5

1

3

2

6 7

4 5

Find a maximum independent 

set S

Show that V-S is a vertex 

cover



Clique

• Clique

– Graph G = (V, E), a subset S of the vertices is 

a clique if there is an edge between every pair 

of vertices in S
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Complement of a Graph

• Defn: G’=(V,E’) is the complement of 

G=(V,E) if (u,v) is in E’ iff (u,v) is not in E
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IS <P Clique

• Lemma: S is Independent in G iff S is a 

Clique in the complement of G

• To reduce IS to Clique, we compute the 

complement of the graph.  The 

complement has a clique of size K iff the 

original graph has an independent set of 

size K



Hamiltonian Circuit Problem

• Hamiltonian Circuit – a simple cycle 

including all the vertices of the graph



Thm: Hamiltonian Circuit is NP 

Complete

• Reduction from 3-SAT



Traveling Salesman Problem

• Given a complete graph with edge weights, 
determine the shortest tour that includes all of 
the vertices (visit each vertex exactly once, and 
get back to the starting point)
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Thm:  HC <P TSP



Graph Coloring

• NP-Complete

– Graph K-coloring

– Graph 3-coloring

• Polynomial

– Graph 2-Coloring


