

Algorithms vs. Lower bounds

- Algorithmic Theory
- What we can compute
- I can solve problem X with resources R
- Proofs are almost always to give an algorithm that meets the resource bounds
- Lower bounds
- How do we show that something can't be done?

Polynomial Time

- P: Class of problems that can be solved in polynomial time
- Corresponds with problems that can be solved efficiently in practice
- Right class to work with "theoretically"

Decision Problems

- Theory developed in terms of yes/no problems
- Independent set
- Given a graph G and an integer K, does G have an independent set of size at least K
- Network Flow
- Given a graph G with edge capacities, a source vertex s , and sink vertex t , and an integer K , does the graph have flow function with value at least K

Definition of P

Decision problems for which there is a polynomial time algorithm

Problem	Description	Algorithm	Yes	No
MULTIPLE	Is x a multiple of y ?	Grade school division	51, 17	51, 16
RELPRIME	Are x and y relatively prime?	Euclid's algorithm	34, 39	34, 51
PRIMES	Is \times prime?	Agrawal, Kayal, Saxena (2002)	53	51
EDITDISTANCE	Is the edit distance between x and y less than 5 ?	Dynamic programming	niether neither	acgggt ttta
LSOLVE	Is there a vector x that satisfies $A x=b ?$	Gaussian elimination		$\left[\begin{array}{lll} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right] \cdot\left[\begin{array}{l} 1 \\ 1 \end{array}\right]$

What is NP?

- Problems solvable in non-deterministic polynomial time ...
- Problems where "yes" instances have polynomial time checkable certificates

Certificate examples

- Independent set of size K
- The Independent Set
- Satifisfiable formula
- Truth assignment to the variables
- Hamiltonian Circuit Problem
- A cycle including all of the vertices
- K-coloring a graph
- Assignment of colors to the vertices

Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Polynomial time reductions

- Y is Polynomial Time Reducible to X
- Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X
- Notations: $\mathrm{Y}<_{p} \mathrm{X}$

Lemmas

- Suppose $Y<_{p} X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.
- Suppose $\mathrm{Y}<_{p} \mathrm{X}$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

NP-Completeness

- A problem X is NP-complete if
-X is in NP
- For every Y in $\mathrm{NP}, \mathrm{Y}<_{\mathrm{p}} \mathrm{X}$
- X is a "hardest" problem in NP
- If X is NP-Complete, Z is in NP and $X<_{P} Z$ - Then Z is NP-Complete

Garey and Johnson

History

- Jack Edmonds
- Identified NP
- Steve Cook
- Cook's Theorem - NP-Completeness
- Dick Karp
- Identified "standard" collection of NP-Complete Problems
- Leonid Levin
- Independent discovery of NP-Completeness in USSR

Populating the NP-Completeness

 Universe- Circuit Sat <p 3-SAT
- 3-SAT <p Independent Set
- 3-SAT <p Vertex Cover
- Independent Set <p Clique
- 3-SAT <p Hamiltonian Circuit
- Hamiltonian Circuit <p Traveling Salesman
- 3-SAT <p Integer Linear Programming
- 3-SAT <p Graph Coloring
- 3-SAT <p Subset Sum
- Subset Sum <p Scheduling with Release times and deadlines

P vs. NP Question

Sample Problems

- Independent Set
- Graph $G=(V, E)$, a subset S of the vertices is independent if there are no edges between vertices in S

Cook's Theorem

- The Circuit Satisfiability Problem is NPComplete
- Circuit Satisfiability
- Given a boolean circuit, determine if there is an assignment of boolean values to the input to make the output true

Proof of Cook's Theorem

- Reduce an arbitrary problem Y in NP to X
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable

