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Algorithms vs. Lower bounds

• Algorithmic Theory

– What we can compute

• I can solve problem X with resources R

– Proofs are almost always to give an algorithm 

that meets the resource bounds

• Lower bounds

– How do we show that something can’t be 

done?



Theory of NP Completeness



The Universe

NP-Complete

P

NP



Polynomial Time 

• P: Class of problems that can be solved in 

polynomial time

– Corresponds with problems that can be 

solved efficiently in practice

– Right class to work with “theoretically”



Decision Problems

• Theory developed in terms of yes/no 

problems

– Independent set

• Given a graph G and an integer K, does G have an 

independent set of size at least K

– Network Flow

• Given a graph G with edge capacities, a source 

vertex s, and sink vertex t, and an integer K, does 

the graph have flow function with value at least K



Definition of P

Problem Description Algorithm Yes No

MULTIPLE Is x a multiple of y?
Grade school 

division
51, 17 51, 16

RELPRIME Are x and y relatively prime? Euclid’s algorithm 34, 39 34, 51

PRIMES Is x prime?
Agrawal, Kayal, 

Saxena (2002)
53 51

EDIT-

DISTANCE

Is the edit distance between x 

and y less than 5?

Dynamic 

programming

niether 
neither

acgggt ttttta

LSOLVE
Is there a vector x that satisfies 

Ax = b?

Gaussian  

elimination
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Decision problems for which there is a polynomial time 

algorithm



What is NP?

• Problems solvable in non-deterministic 

polynomial time . . . 

• Problems where “yes” instances have 

polynomial time checkable certificates



Certificate examples

• Independent set of size K

– The Independent Set

• Satifisfiable formula

– Truth assignment to the variables

• Hamiltonian Circuit Problem

– A cycle including all of the vertices

• K-coloring a graph

– Assignment of colors to the vertices



Certifiers and Certificates:  

3-Satisfiability



x1  x2  x3   x1  x2  x3   x1  x2  x4   x1   x3   x4 



x1 1, x2 1, x3  0, x4 1

instance s

certificate t

SAT:  Does a given CNF formula have a satisfying formula

Certificate:  An assignment of truth values to the n boolean variables

Certifier: Check that each clause has at least one true literal,



Certifiers and Certificates:  

Hamiltonian Cycle
HAM-CYCLE.  Given an undirected graph G = (V, E), does there exist a 

simple cycle C that visits every node?

Certificate.  A permutation of the n nodes.

Certifier.  Check that the permutation contains each node in V exactly once, 

and that there is an edge between each pair of adjacent nodes in the 

permutation.

instance s certificate t



Polynomial time reductions

• Y is Polynomial Time Reducible to X

– Solve problem Y with a polynomial number of 

computation steps and a polynomial number 

of calls to a black box that solves X

– Notations:  Y <P X



Lemmas

• Suppose Y <P X.  If X can be solved in 

polynomial time, then Y can be solved in 

polynomial time.

• Suppose Y <P X.  If Y cannot be solved in 

polynomial time, then X cannot be solved 

in polynomial time.



NP-Completeness

• A problem X is NP-complete if 

– X is in NP

– For every Y in NP,  Y <P X

• X is a “hardest” problem in NP

• If X is NP-Complete, Z is in NP and X <P Z

– Then Z is NP-Complete



Cook’s Theorem

• The Circuit Satisfiability Problem is NP-

Complete



Circuit SAT
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Garey and Johnson



History

• Jack Edmonds

– Identified NP

• Steve Cook

– Cook’s Theorem – NP-Completeness

• Dick Karp

– Identified “standard” collection of NP-Complete 

Problems

• Leonid Levin

– Independent discovery of NP-Completeness in USSR



P vs. NP Question

NP-Complete

P

NP P        NP



Populating the NP-Completeness 

Universe
• Circuit Sat <P 3-SAT

• 3-SAT <P Independent Set

• 3-SAT <P Vertex Cover

• Independent Set <P Clique

• 3-SAT <P Hamiltonian Circuit

• Hamiltonian Circuit <P Traveling Salesman

• 3-SAT <P Integer Linear Programming

• 3-SAT <P Graph Coloring

• 3-SAT <P Subset Sum

• Subset Sum <P Scheduling with Release times and 
deadlines

NP-Complete

NP

P



Sample Problems

• Independent Set

– Graph G = (V, E), a subset S of the vertices is 

independent if there are no edges between 

vertices in S

1

3

2

6 7

4 5



Vertex Cover

• Vertex Cover

– Graph G = (V, E), a subset S of the vertices is 

a vertex cover if every edge in E has at least 

one endpoint in S

1

3

2

6 7

4 5



Cook’s Theorem

• The Circuit Satisfiability Problem is NP-

Complete

• Circuit Satisfiability

– Given a boolean circuit, determine if there is 

an assignment of boolean values to the input 

to make the output true



Circuit SAT
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Proof of Cook’s Theorem

• Reduce an arbitrary problem Y in NP to X

• Let A be a non-deterministic polynomial 

time algorithm for Y

• Convert A to a circuit, so that Y is a Yes 

instance iff and only if the circuit is 

satisfiable


