

CSE 421 Algorithms

Autumn 2019 Lecture 24 Network Flow Applications

Announcements

- Homework 9: Due Wednesday, Nov 27
- · Homework 10: Due Friday, Dec 6
- Final Exam: Monday, Dec 9, 2:30 PM

Fri, Nov 22	Net Flow Applications
Mon, Nov 25	Net Flow Applications
Wed, Nov 27	NP-Completeness
Fri, Nov 29	Holiday
Mon, Dec 2	NP-Completeness
Wed, Dec 4	NP-Completeness
Fri, Dec 6	Beyond NP-Completeness

Today's topics

- · Network flow reductions
 - Multi source flow
 - Reviewer Assignment
- Baseball Scheduling
- Image Segmentation
- Reading: 7.5, 7.6, 7.10-7.12

Review

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - $0 \le f(e) \le c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Review

Key Ideas for Network Flow

- · Residual Graph for a Flow
- · Augmenting a flow
- · Ford Fulkerson Algorithm
- Max Flow / Min Cut Theorem
- · Practical Flow Algorithms
- Modelling problems as Network Flow or Minimum Cut

Undirected Network Flow

- · Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Bipartite Matching

- A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Application

- · A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

RA 🔵

PB O

331

311

DG 🔘

332

AK 🔵

421

Converting Matching to Network Flow

Finding edge disjoint paths

Multi-source network flow

- · Multi-source network flow
 - Sources s_1, s_2, \ldots, s_k
 - Sinks t_1, t_2, \ldots, t_j
- · Solve with Single source network flow

Resource Allocation: Assignment of reviewers

- A set of papers P₁, ..., P_n
 A set of reviewers R₁, ..., R_m
- Paper P_i requires A_i reviewers
- Reviewer R_j can review B_j papers
- For each reviewer R_i , there is a list of paper L_{i1}, \ldots, L_{ik} that R_i is qualified to review

Resource Allocation: Illegal Campaign Donations

- Candidates C_i, . . ., C_n
 - Donate b_i to C_i
- · With a little help from your friends
 - Friends F_1, \ldots, F_m
 - F_i can give a_{ii} to candidate C_i
 - You can give at most M_i to F_i

Baseball elimination

- · Can the Dinosaurs win the league?
- · Remaining games:
 - AB, AC, AD, AD, AD, BC, BC, BC, BD, CD

	W	L
Ants	4	2
Bees	4	2
Cockroaches	3	3
Dinosaurs	1	5

A team wins the league if it has strictly more wins than any other team at the end of the season A team ties for first place if no team has more wins, and there is some other team with the same

Baseball elimination

- · Can the Fruit Flies win or tie the league?
- · Remaining games:
 - AC, AD, AD, AD, AF, BC, BC, BC, BC, BC, BD, BE, BE, BE, BF, CE, CE, CE, CF, CF, DE, DF, EF, EF

	W	L
Ants	17	12
Bees	16	7
Cockroaches	16	7
Dinosaurs	14	13
Earthworms	14	10
Fruit Flies	12	15

Assume Fruit Flies win remaining games

- · Fruit Flies are tied for first place if no team wins more than 19 games
- Allowable wins
 - Ants (2)
 - Bees (3)
 - Cockroaches (3)
 - Dinosaurs (5)
 - Earthworms (5)
- · 18 games to play
 - AC, AD, AD, AD, BC, BC, BC, BC, BC, BC, BD, BE, BE, BE, CE, CE, CE, DE

	W	L
Ants	17	13
Bees	16	8
Cockroaches	16	9
Dinosaurs	14	14
Earthworms	14	12
Fruit Flies	19	15

Remaining games AC, AD, AD, AD, BC, BC, BC, BC, BD, BE, BE, BE, CE, CE, CE, DE s (DE) (E) (D) (B) T

Minimum Cut Applications

- Image Segmentation
- Open Pit Mining / Task Selection Problem
- · Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with s in S and t in T

The capacity of an S, T cut is the sum of the capacities of all edges going from S to T $\,$

Image Segmentation

 Separate foreground from background

Image analysis

- a_i: value of assigning pixel i to the foreground
- b_i: value of assigning pixel i to the background
- p_{ij} : penalty for assigning i to the foreground, j to the background or vice versa
- · A: foreground, B: background
- $Q(A,B) = \sum_{\{i \text{ in } A\}} a_i + \sum_{\{j \text{ in } B\}} b_j \sum_{\{(i,j) \text{ in } E, i \text{ in } A, j \text{ in } B\}} p_{ij}$

