CSE 421
Algorithms
Autumn 2019
Lecture 24
Network Flow Applications

Announcements
• Homework 9: Due Wednesday, Nov 27
• Homework 10: Due Friday, Dec 6
• Final Exam: Monday, Dec 9, 2:30 PM

Today’s topics
• Network flow reductions
 – Multi source flow
 – Reviewer Assignment
• Baseball Scheduling
• Image Segmentation
• Reading: 7.5, 7.6, 7.10-7.12

Network Flow Definitions
• Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
• Capacities on the edges, c(e) >= 0
• Problem, assign flows f(e) to the edges such that:
 – 0 <= f(e) <= c(e)
 – Flow is conserved at vertices other than s and t
 • Flow conservation: flow going into a vertex equals the flow going out
 – The flow leaving the source is a large as possible

Key Ideas for Network Flow
• Residual Graph for a Flow
• Augmenting a flow
• Ford Fulkerson Algorithm
• Max Flow / Min Cut Theorem
• Practical Flow Algorithms
• Modelling problems as Network Flow or Minimum Cut

Max Flow / Min Cut
Undirected Network Flow
- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Bipartite Matching
- A graph $G=(V,E)$ is bipartite if the vertices can be partitioned into disjoint sets X,Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Application
- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

Converting Matching to Network Flow

Finding edge disjoint paths

Multi-source network flow
- Multi-source network flow
 - Sources s_1, s_2, \ldots, s_k
 - Sinks t_1, t_2, \ldots, t_j
- Solve with Single source network flow
Resource Allocation: Assignment of reviewers

- A set of papers P_1, \ldots, P_n
- A set of reviewers R_1, \ldots, R_m
- Paper P_i requires A_i reviewers
- Reviewer R_j can review B_j papers
- For each reviewer R_j, there is a list of papers L_{j1}, \ldots, L_{jk} that R_j is qualified to review

Resource Allocation: Illegal Campaign Donations

- Candidates C_1, \ldots, C_n
 - Donate b_i to C_i
- With a little help from your friends
 - Friends F_1, \ldots, F_m
 - F_i can give a_{ij} to candidate C_j
 - You can give at most M_i to F_i

Baseball elimination

- Can the Dinosaurs win the league?
- Remaining games:
 - AB, AC, AD, AD, AD, BC, BC, BC, BD

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ants</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Bees</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Cockroaches</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Dinosaurs</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

A team wins the league if it has strictly more wins than any other team at the end of the season. A team ties for first place if no team has more wins and there is some other team with the same number of wins.

Assume Fruit Flies win remaining games

- Fruit Flies are tied for first place if no team wins more than 19 games
- Allowable wins
 - Ants (2)
 - Bees (3)
 - Cockroaches (3)
 - Dinosaurs (5)
 - Earthworms (5)
- 18 games to play

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ants</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>Bees</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Cockroaches</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Dinosaurs</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Earthworms</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Fruit Flies</td>
<td>19</td>
<td>15</td>
</tr>
</tbody>
</table>

Remaining games

[Diagram of baseball elimination]
Minimum Cut Applications

- Image Segmentation
- Open Pit Mining / Task Selection Problem
- Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with s in S and t in T
The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

Image Segmentation

- Separate foreground from background

Image analysis

- \(a_i \): value of assigning pixel i to the foreground
- \(b_i \): value of assigning pixel i to the background
- \(p_{ij} \): penalty for assigning i to the foreground, j to the background or vice versa
- A: foreground, B: background
- \(Q(A,B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E, i \in A, j \in B} p_{ij} \)

Pixel graph to flow graph

MinCut Construction