

CSE 421 Algorithms

Autumn 2019
Lecture 24
Network Flow Applications

Announcements

- Homework 9: Due Wednesday, Nov 27
- Homework 10: Due Friday, Dec 6
- Final Exam: Monday, Dec 9, 2:30 PM

Fri, Nov 22	Net Flow Applications
Mon, Nov 25	Net Flow Applications
Wed, Nov 27	NP-Completeness
Fri, Nov 29	Holiday
Mon, Dec 2	NP-Completeness
Wed, Dec 4	NP-Completeness
Fri, Dec 6	Beyond NP-Completeness

Today's topics

- Network flow reductions
 - Multi source flow
 - Reviewer Assignment
- Baseball Scheduling
- Image Segmentation
- Reading: 7.5, 7.6, 7.10-7.12

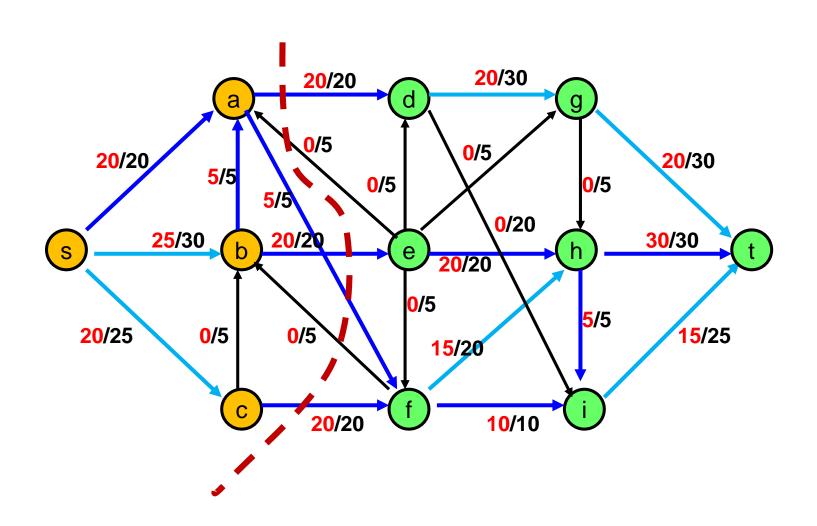
Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - $0 \le f(e) \le c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Key Ideas for Network Flow

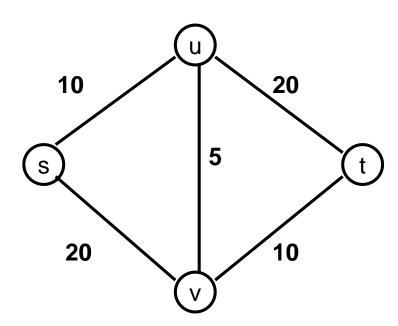
- Residual Graph for a Flow
- Augmenting a flow
- Ford Fulkerson Algorithm
- Max Flow / Min Cut Theorem
- Practical Flow Algorithms
- Modelling problems as Network Flow or Minimum Cut

Max Flow / Min Cut



Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)



Bipartite Matching

 A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y

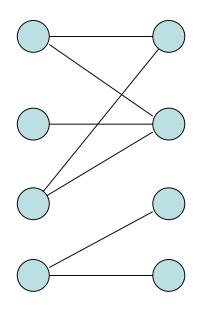
 A matching M is a subset of the edges that does not share any vertices

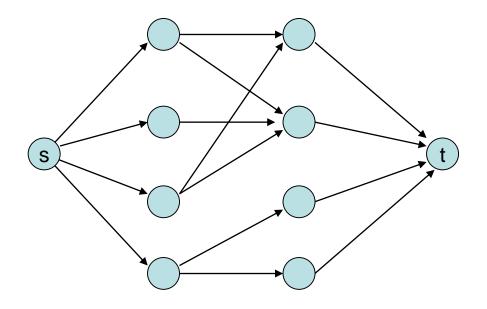
Find a matching as large as possible

Application

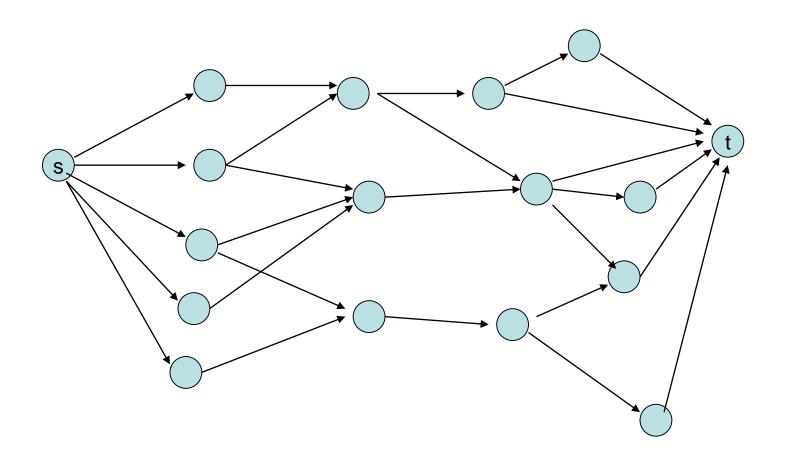
- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

Converting Matching to Network Flow





Finding edge disjoint paths



Construct a maximum cardinality set of edge disjoint paths

Multi-source network flow

- Multi-source network flow
 - Sources s_1, s_2, \ldots, s_k
 - Sinks t_1, t_2, \ldots, t_j
- Solve with Single source network flow

Resource Allocation: Assignment of reviewers

- A set of papers P₁, . . ., P_n
- A set of reviewers R₁, . . . , R_m
- Paper P_i requires A_i reviewers
- Reviewer R_i can review B_i papers
- For each reviewer R_j , there is a list of paper L_{j1},\ldots,L_{jk} that R_j is qualified to review

Resource Allocation: Illegal Campaign Donations

- Candidates C_i, . . ., C_n
 - Donate b_i to C_i
- With a little help from your friends
 - Friends F_1, \ldots, F_m
 - F_i can give a_{ij} to candidate C_i
 - You can give at most M_i to F_i

Baseball elimination

- Can the Dinosaurs win the league?
- Remaining games:
 - AB, AC, AD, AD, AD,BC, BC, BC, BD, CD

	W	L
Ants	4	2
Bees	4	2
Cockroaches	3	3
Dinosaurs	1	5

A team wins the league if it has strictly more wins than any other team at the end of the season A team ties for first place if no team has more wins, and there is some other team with the same number of wins

Baseball elimination

- Can the Fruit Flies win or tie the league?
- Remaining games:
 - AC, AD, AD, AD, AF,
 BC, BC, BC, BC, BC,
 BD, BE, BE, BE, BE,
 BF, CE, CE, CE, CF,
 CF, DE, DF, EF, EF

	W	L
Ants	17	12
Bees	16	7
Cockroaches	16	7
Dinosaurs	14	13
Earthworms	14	10
Fruit Flies	12	15

Assume Fruit Flies win remaining games

- Fruit Flies are tied for first place if no team wins more than 19 games
- Allowable wins
 - Ants (2)
 - Bees (3)
 - Cockroaches (3)
 - Dinosaurs (5)
 - Earthworms (5)
- 18 games to play
 - AC, AD, AD, AD, BC, BC, BC, BC, BC, BC, BD, BE, BE, BE, CE, CE, CE, DE

	W	L
Ants	17	13
Bees	16	8
Cockroaches	16	9
Dinosaurs	14	14
Earthworms	14	12
Fruit Flies	19	15

Remaining games

AC, AD, AD, AD, BC, BC, BC, BC, BC, BD, BE, BE, BE, CE, CE, CE, DE

 (A)

 (B)

Minimum Cut Applications

- Image Segmentation
- Open Pit Mining / Task Selection Problem
- Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with s in S and t in T

The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

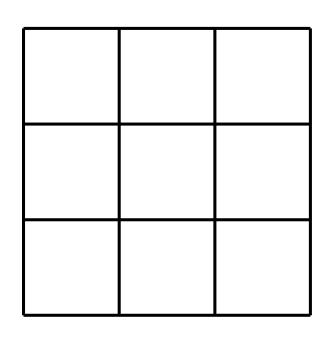
Image Segmentation

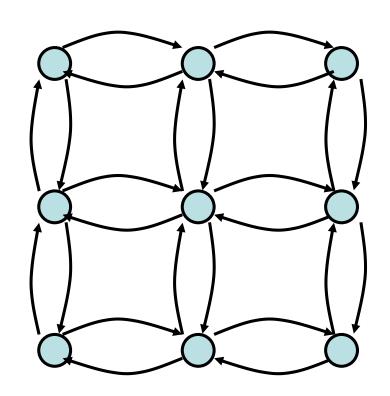
 Separate foreground from background

Image analysis

- a_i: value of assigning pixel i to the foreground
- b_i: value of assigning pixel i to the background
- p_{ij}: penalty for assigning i to the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A,B) = \sum_{\{i \text{ in } A\}} a_i + \sum_{\{j \text{ in } B\}} b_j \sum_{\{(i,j) \text{ in } E, i \text{ in } A, j \text{ in } B\}} p_{ij}$

Pixel graph to flow graph





Mincut Construction

