

CSE 421 Algorithms

Autumn 2019 Lecture 24
Network Flow Applications

Announcements

- Homework 9: Due Wednesday, Nov 27
- Homework 10: Due Friday, Dec 6
- Final Exam: Monday, Dec 9, 2:30 PM

Fri, Nov 22	Net Flow Applications
Mon, Nov 25	Net Flow Applications
Wed, Nov 27	NP-Completeness
Fri, Nov 29	Holiday
Mon, Dec 2	NP-Completeness
Wed, Dec 4	NP-Completeness
Fri, Dec 6	Beyond NP-Completeness

Today's topics

- Network flow reductions
- Multi source flow
- Reviewer Assignment
- Baseball Scheduling
- Image Segmentation
- Reading: 7.5, 7.6, 7.10-7.12

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $c(e)>=0$
- Problem, assign flows $f(e)$ to the edges such that:
$-0<=\mathrm{f}(\mathrm{e})<=\mathrm{c}(\mathrm{e})$
- Flow is conserved at vertices other than s and t
- Flow conservation: flow going into a vertex equals the flow going out
- The flow leaving the source is a large as possible

Key Ideas for Network Flow

- Residual Graph for a Flow
- Augmenting a flow
- Ford Fulkerson Algorithm
- Max Flow / Min Cut Theorem
- Practical Flow Algorithms
- Modelling problems as Network Flow or Minimum Cut

Max Flow / Min Cut

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Bipartite Matching

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if the vertices can be partitioned into disjoints sets X, Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Application

- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

RA	\bigcirc	$\bigcirc 311$
PB	\bigcirc	- 331
ME	\bigcirc	- 332
dg	\bigcirc	- 401
AK	\bigcirc	\bigcirc

Converting Matching to Network Flow

Finding edge disjoint paths

Construct a maximum cardinality set of edge disjoint paths

Multi-source network flow

- Multi-source network flow
- Sources $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}$
- Sinks $t_{1}, t_{2}, \ldots, t_{j}$
- Solve with Single source network flow

Resource Allocation:

Assignment of reviewers

- A set of papers $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}$
- A set of reviewers R_{1}, \ldots, R_{m}
- Paper P_{i} requires A_{i} reviewers
- Reviewer R_{j} can review B_{j} papers
- For each reviewer R_{j}, there is a list of paper $L_{j 1}, \ldots, L_{j k}$ that R_{j} is qualified to review

Resource Allocation:

Illegal Campaign Donations

- Candidates $\mathrm{C}_{\mathrm{i}}, \ldots, \mathrm{C}_{\mathrm{n}}$
- Donate b_{i} to C_{i}
- With a little help from your friends
- Friends F_{1}, \ldots, F_{m}
- F_{i} can give $a_{i j}$ to candidate C_{j}
- You can give at most M_{i} to F_{i}

Baseball elimination

- Can the Dinosaurs win the league?
- Remaining games:
- AB, AC, AD, AD, AD, $B C, B C, B C, B D, C D$

	W	L
Ants	4	2
Bees	4	2
Cockroaches	3	3
Dinosaurs	1	5

A team wins the league if it has strictly more wins than any other team at the end of the season A team ties for first place if no team has more wins, and there is some other team with the same number of wins

Baseball elimination

- Can the Fruit Flies win or tie the league?
- Remaining games:
- AC, AD, AD, AD, AF, $B C, B C, B C, B C, B C$, $B D, B E, B E, B E, B E$, $B F, C E, C E, C E, C F$, CF, DE, DF, EF, EF

	W	L
Ants	17	12
Bees	16	7
Cockroaches	16	7
Dinosaurs	14	13
Earthworms	14	10
Fruit Flies	12	15

Assume Fruit Flies win remaining games

- Fruit Flies are tied for first place if no team wins more than 19 games
- Allowable wins
- Ants (2)
- Bees (3)
- Cockroaches (3)
- Dinosaurs (5)
- Earthworms (5)
- 18 games to play
- AC, AD, AD, AD, BC, BC, $B C, B C, B C, B D, B E, B E$,

	W	L
Ants	17	13
Bees	16	8
Cockroaches	16	9
Dinosaurs	14	14
Earthworms	14	12
Fruit Flies	19	15

Remaining games

$A C, A D, A D, A D, B C, B C, B C, B C, B C, B D, B E, B E, B E, B E, C E, C E, C E, D E$

Minimum Cut Applications

- Image Segmentation
- Open Pit Mining / Task Selection Problem
- Reduction to Min Cut problem
S, T is a cut if S, T is a partition of the vertices with s in S and t in T
The capacity of an S , T cut is the sum of the capacities of all edges going from S to T

Image Segmentation

- Separate foreground from background

Image analysis

- a_{i} : value of assigning pixel i to the foreground
- b_{i} : value of assigning pixel i to the background
- $p_{i j}$: penalty for assigning i to the foreground, j to the background or vice versa
- A : foreground, B : background
- $Q(A, B)=\Sigma_{\{i \text { in } A\}} a_{i}+\Sigma_{\{j \text { in } B\}} b_{j}-\Sigma_{\{(i, j) \text { in } E, i \text { in } A, j \text { in } B\}} P_{i j}$

Pixel graph to flow graph (s)

(1)

Mincut Construction

