

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Simple applications of Max Flow

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $c(e)>=0$
- Problem, assign flows $f(e)$ to the edges such that:
$-0<=\mathrm{f}(\mathrm{e})<=\mathrm{c}(\mathrm{e})$
- Flow is conserved at vertices other than s and t
- Flow conservation: flow going into a vertex equals the flow going out
- The flow leaving the source is a large as possible

Augmenting Path Algorithm

- Augmenting path in residual graph
- Vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$
- $\mathrm{v}_{1}=\mathrm{s}, \mathrm{v}_{\mathrm{k}}=\mathrm{t}$
- Possible to add b units of flow between v_{j} and v_{j+1} for $\mathrm{j}=1 \ldots \mathrm{k}-1$

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_{R}
- G: edge e from u to v with capacity c and flow f
$-G_{R}$: edge e^{\prime} from u to v with capacity $c-f$
$-G_{R}$: edge e" from v to u with capacity f

Ford-Fulkerson Algorithm (1956)
while not done
Construct residual graph G_{R}
Find an s-t path P in G_{R} with capacity $b>0$
Add b units along in G

If the sum of the capacities of edges leaving S is at most C , then the algorithm takes at most C iterations

Flow Example

Cuts in a graph

- Cut: Partition of V into disjoint sets S , T with s in S and t in T.
- $\operatorname{Cap}(\mathrm{S}, \mathrm{T})$: sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
- Sum of flows out of S minus sum of flows into S
- $\operatorname{Flow}(\mathrm{S}, \mathrm{T})<=\operatorname{Cap}(\mathrm{S}, \mathrm{T})$

What is $\operatorname{Cap}(\mathrm{S}, \mathrm{T})$ and $\operatorname{Flow}(\mathrm{S}, \mathrm{T})$

$S=\{s, a, b, e, h\}, \quad T=\{c, f, i, d, g, t\}$

What is $\operatorname{Cap}(\mathrm{S}, \mathrm{T})$ and $\operatorname{Flow}(\mathrm{S}, \mathrm{T})$

$$
\operatorname{Cap}(S, T)=95, \quad \operatorname{Flow}(S, T)=80-15=65
$$

Minimum value cut

Find a minimum value cut

MaxFlow - MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G_{R} reachable from s with paths of positive capacity

Find a minimum value cut

Let S be the set of vertices in G_{R} reachable from s with paths of positive capacity

What can we say about the flows and capacity between u and v ?

Max Flow - Min Cut Theorem

- Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.
- If we want to find a minimum cut, we begin by looking for a maximum flow.

History

- Ford / Fulkerson studied network flow in the context of the Soviet Rail Network

Performance

- The worst case performance of the FordFulkerson algorithm is horrible

Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
- $\mathrm{O}\left(\mathrm{m}^{2} \log (\mathrm{C})\right)$ time algorithm for network flow
- Find the shortest augmenting path
- O($\mathrm{m}^{2} \mathrm{n}$) time algorithm for network flow
- Find a blocking flow in the residual graph
- O(mnlog n) time algorithm for network flow

Problem Reduction

- Reduce Problem A to Problem B
- Convert an instance of Problem A to an instance of Problem B
- Use a solution of Problem B to get a solution to Problem A
- Practical
- Use a program for Problem B to solve Problem A
- Theoretical
- Show that Problem B is at least as hard as Problem A

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Problem Reduction Examples

- Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: $8,-3,2,12,1,-6$

Bipartite Matching

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if the vertices can be partitioned into disjoints sets X, Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Application

- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

	\bigcirc	\bigcirc	311
PB	\bigcirc	\bigcirc	${ }^{31}$
ME	\bigcirc	\bigcirc	332
dG		\bigcirc	401
AK	\bigcirc	\bigcirc	

Finding edge disjoint paths

Construct a maximum cardinality set of edge disjoint paths

