

CSE 421 Algorithms

Lecture 23
Autumn 2019
Network Flow, Part 2

Outline

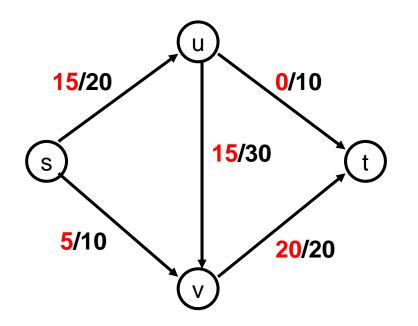
- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Simple applications of Max Flow

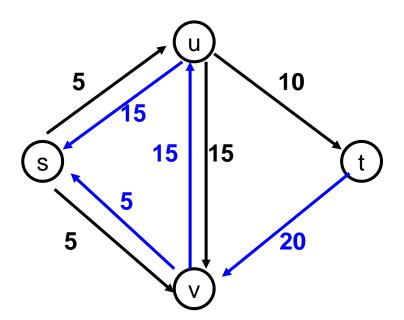
Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - $0 \le f(e) \le c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Residual Graph

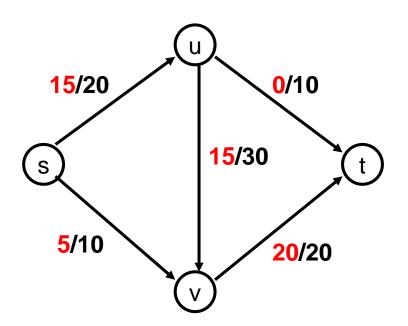
- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - G_R: edge e' from u to v with capacity c f
 - G_R: edge e" from v to u with capacity f

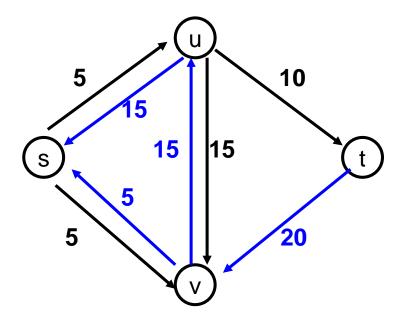




Augmenting Path Algorithm

- Augmenting path in residual graph
 - Vertices v_1, v_2, \dots, v_k
 - $V_1 = S$, $V_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for $j = 1 \dots k-1$





Ford-Fulkerson Algorithm (1956)

while not done

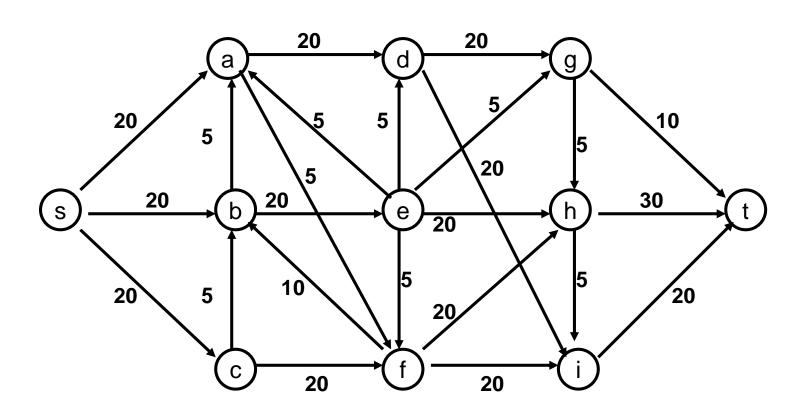
Construct residual graph G_R

Find an s-t path P in G_R with capacity b > 0

Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

Flow Example



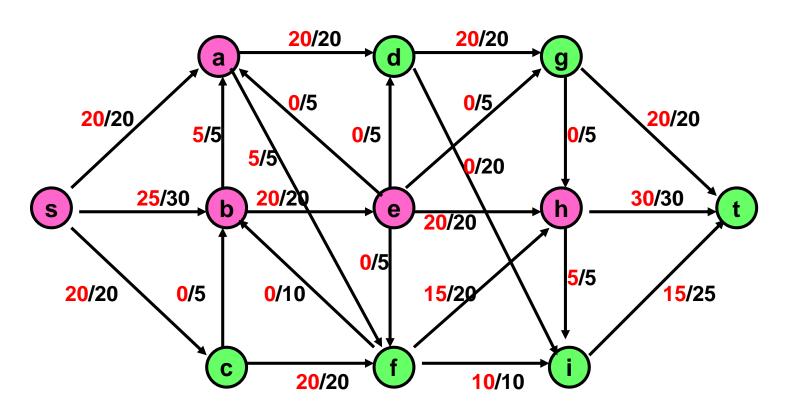
Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
 - Sum of flows out of S minus sum of flows into S

Flow(S,T) <= Cap(S,T)

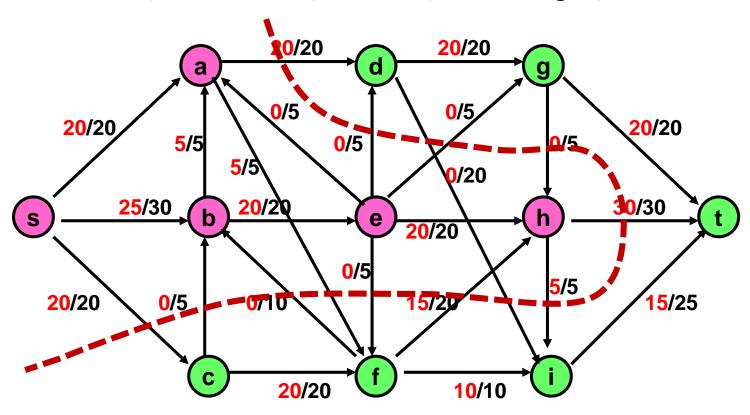
What is Cap(S,T) and Flow(S,T)

 $S=\{s, a, b, e, h\}, T=\{c, f, i, d, g, t\}$



What is Cap(S,T) and Flow(S,T)

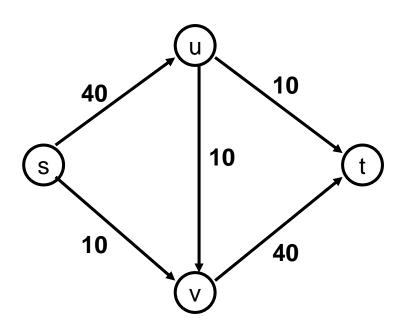
 $S=\{s, a, b, e, h\}, T=\{c, f, i, d, g, t\}$



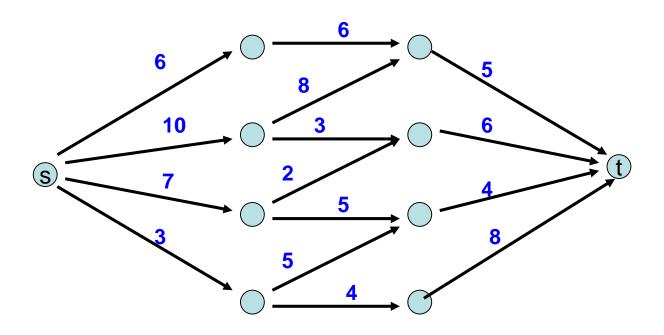
$$Cap(S,T) = 95,$$

$$Flow(S,T) = 80 - 15 = 65$$

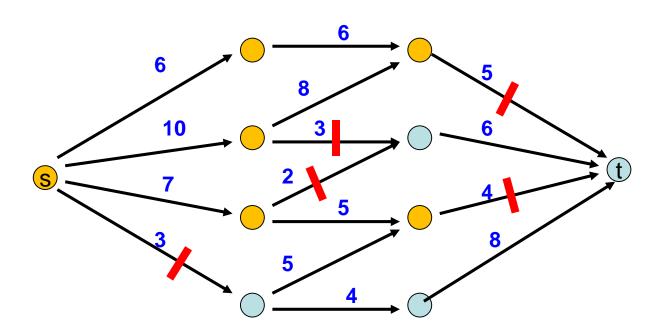
Minimum value cut



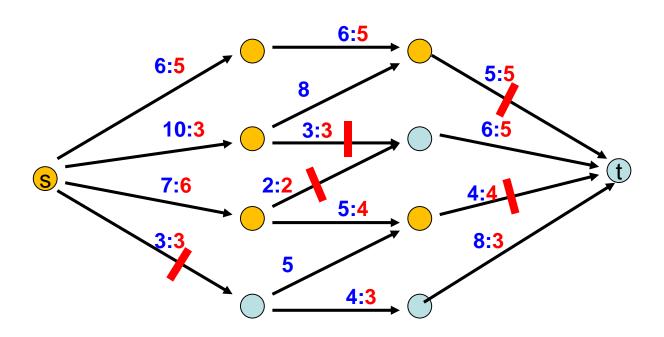
Find a minimum value cut



Find a minimum value cut

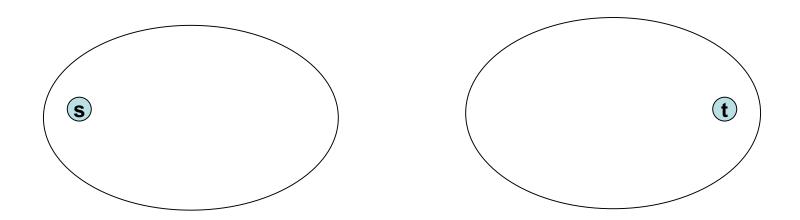


Find a minimum value cut

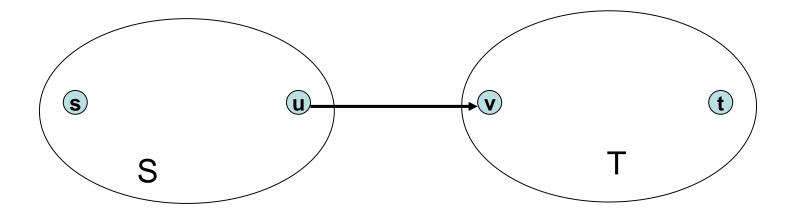


MaxFlow - MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G_R reachable from s with paths of positive capacity



Let S be the set of vertices in G_R reachable from s with paths of positive capacity



What can we say about the flows and capacity between u and v?

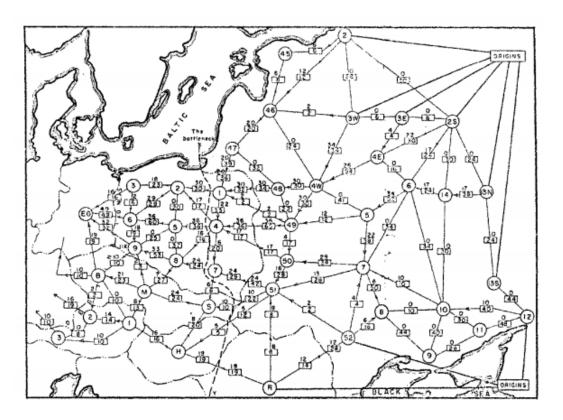
Max Flow - Min Cut Theorem

 Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.

 If we want to find a minimum cut, we begin by looking for a maximum flow.

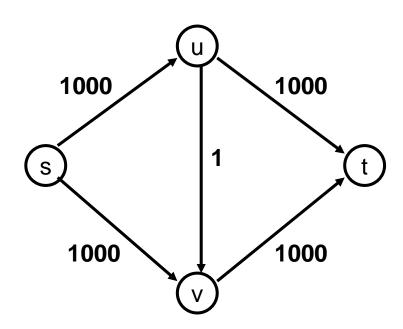
History

 Ford / Fulkerson studied network flow in the context of the Soviet Rail Network



Performance

 The worst case performance of the Ford-Fulkerson algorithm is horrible



Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - O(m²log(C)) time algorithm for network flow
- Find the shortest augmenting path
 - O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph
 - O(mnlog n) time algorithm for network flow

Problem Reduction

- Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance of Problem B
 - Use a solution of Problem B to get a solution to Problem A
- Practical
 - Use a program for Problem B to solve Problem A
- Theoretical
 - Show that Problem B is at least as hard as Problem A

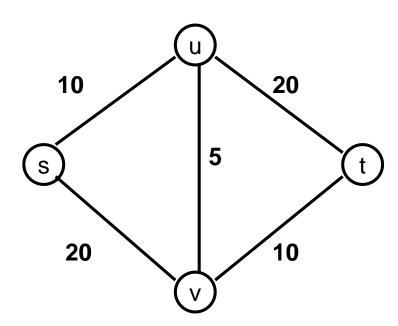
Problem Reduction Examples

 Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: 8, -3, 2, 12, 1, -6

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)



Bipartite Matching

 A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y

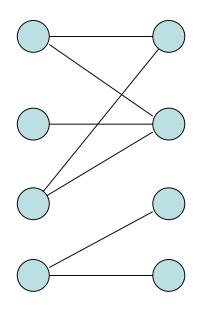
 A matching M is a subset of the edges that does not share any vertices

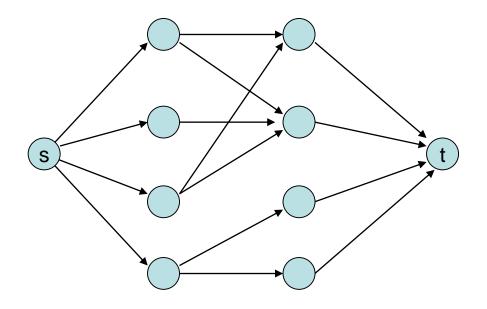
Find a matching as large as possible

Application

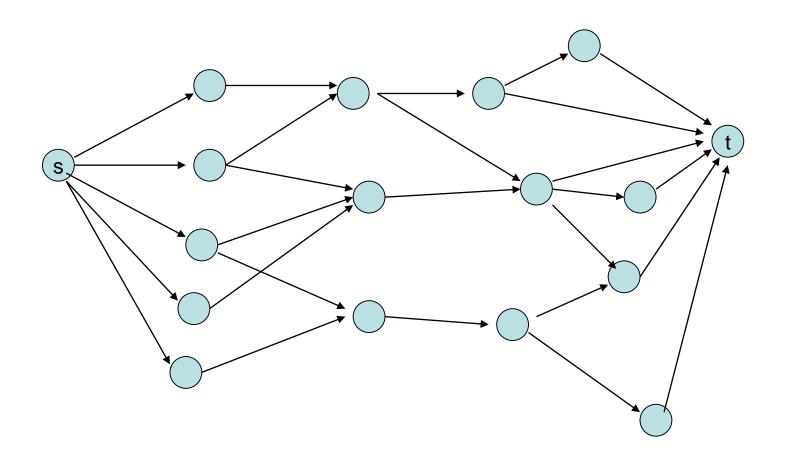
- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

Converting Matching to Network Flow





Finding edge disjoint paths



Construct a maximum cardinality set of edge disjoint paths