CSE 421
Algorithms
Lecture 22
Network Flow, Part 1

Outline
• Network flow definitions
• Flow examples
• Augmenting Paths
• Residual Graph
• Ford Fulkerson Algorithm
• Cuts
• Maxflow-MinCut Theorem

Network Flow Definitions
• Capacity
• Source, Sink
• Capacity Condition
• Conservation Condition
• Value of a flow

Flow Example

Network Flow Definitions
• Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
• Capacities on the edges, c(e) >= 0
• Problem, assign flows f(e) to the edges such that:
 – 0 <= f(e) <= c(e)
 – Flow is conserved at vertices other than s and t
 • Flow conservation: flow going into a vertex equals the flow going out
 – The flow leaving the source is a large as possible
Flow Example

Find a maximum flow

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - G_R: edge e' from u to v with capacity $c - f$
 - G_R: edge e'' from v to u with capacity f

Augmenting Path Algorithm

- Augmenting path
 - Vertices v_1, v_2, \ldots, v_k
 - $v_1 = s$, $v_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for $j = 1 \ldots k-1$
Augmenting Path Lemma

- Let $P = v_1, v_2, \ldots, v_k$ be a path from s to t with minimum capacity b in the residual graph.
- b units of flow can be added along the path P in the flow graph.

Proof

- Add b units of flow along the path P
- What do we need to verify to show we have a valid flow after we do this?

Ford-Fulkerson Algorithm (1956)

while not done
 Construct residual graph G_r
 Find an s-t path P in G_r with capacity $b > 0$
 Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations