CSE 421 Algorithms

Richard Anderson
Lecture 21
Shortest Paths and Network Flow

Shortest Paths with Dynamic Programming

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
 - O(mlog n) time, positive cost edges
- Bellman-Ford Algorithm
 - O(mn) time for graphs which can have negative cost edges

Lemma

- If a graph has no negative cost cycles, then the shortest paths are simple paths
- Shortest paths have at most n-1 edges

Shortest paths with a fixed number of edges

• Find the shortest path from s to w with exactly k edges

Express as a recurrence

- Compute distance from starting vertex s
- $Opt_k(w) = min_x [Opt_{k-1}(x) + c_{xw}]$
- Opt₀(w) = 0 if w = s and infinity otherwise

Algorithm, Version 1

```
for each w M[0, w] = infinity; M[0, s] = 0; for i = 1 to n-1 for each w M[i, w] = min_x(M[i-1,x] + cost[x,w]);
```

Algorithm, Version 2

```
for each w M[0, \, w] = infinity; M[0, \, s] = 0; for \, i = 1 \, to \, n-1 for \, each \, w M[i, \, w] = min(M[i-1, \, w], \, min_x(M[i-1,x] + cost[x,w]));
```

Algorithm, Version 3

```
for each w M[w] = infinity; M[s] = 0; for i = 1 to n-1 for each w M[w] = min(M[w], min_x(M[x] + cost[x,w]));
```

Correctness Proof for Algorithm 3

 Key lemma – at the end of iteration i, for all w, M[w] <= M[i, w];

Algorithm, Version 4

```
for each w M[w] = infinity; M[s] = 0; for i = 1 to n-1 for each w for each x if (M[w] > M[x] + cost[x,w]) P[w] = x; M[w] = M[x] + cost[x,w];
```

If the pointer graph has a cycle, then the graph has a negative cost cycle

If P[w] = x then M[w] >= M[x] + cost(x,w)

Equal when w is updated
M[x] could be reduced after update

Let v₁, v₂,...v_k be a cycle in the pointer graph with (v_k,v₁) the last edge added
Just before the update

M[v] >= M[v_{j+1} + cost(v_{j+1}, v_j) for j < k
M[v_k] > M[v₁] + cost(v₁, v_k)

Adding everything up

0 > cost(v₁,v₂) + cost(v₂,v₃) + ... + cost(v_k, v₁)

Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles

Finding negative cost cycles

• What if you want to find negative cost cycles?

What about finding Longest Paths

• Can we just change Min to Max?

Network Flow

Outline

- · Network flow definitions
- Flow examples
- · Augmenting Paths
- · Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- · Maxflow-MinCut Theorem

Network Flow Definitions

- Capacity
- · Source, Sink
- · Capacity Condition
- · Conservation Condition
- · Value of a flow

Flow assignment and the residual graph

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - $0 \le f(e) \le c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Augmenting Path Algorithm

- Augmenting path

 - Vertices v₁, v₂,...,v_k
 v₁ = s, v_k = t
 Possible to add b units of flow between v_j and v_{j+1} for j = 1 ... k-1

