Longest Common Subsequence

• $C = c_1 \ldots c_g$ is a subsequence of $A = a_1 \ldots a_m$ if C can be obtained by removing elements from A (but retaining order)

• $LCS(A, B)$: A maximum length sequence that is a subsequence of both A and B

$LCS(\text{BARTHOLEMEWSIMPSON}, \text{KRUSTYTHECLOWN})$

$= \text{RTHOWN}$
LCS Optimization

• $A = a_1a_2\ldots a_m$, $B = b_1b_2\ldots b_n$

• $\text{Opt}[j,k]$ is the length of $\text{LCS}(a_1a_2\ldots a_j, b_1b_2\ldots b_k)$

• Optimization Recurrence:
 - If $a_j = b_k$, $\text{Opt}[j,k] = 1 + \text{Opt}[j-1,k-1]$
 - If $a_j \neq b_k$, $\text{Opt}[j,k] = \max(\text{Opt}[j-1,k], \text{Opt}[j,k-1])$
Dynamic Programming
Computation

Diagram of a grid with nodes connected by arrows, illustrating the computation process in dynamic programming.
Code to compute Opt[n, m]

for (int i = 0; i < n; i++)
 for (int j = 0; j < m; j++)
 if (A[i] == B[j])
 Opt[i,j] = Opt[i-1, j-1] + 1;
 else if (Opt[i-1, j] >= Opt[i, j-1])
 Opt[i, j] := Opt[i-1, j];
 else
 Opt[i, j] := Opt[i, j-1];
Storing the path information

A[1..m], B[1..n]

for i := 1 to m Opt[i, 0] := 0;
for j := 1 to n Opt[0,j] := 0;
Opt[0,0] := 0;
for i := 1 to m
 for j := 1 to n
 else if Opt[i-1, j] >= Opt[i, j-1]
 { Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; }
 else { Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; }
How good is this algorithm?

- Is it feasible to compute the LCS of two strings of length 300,000 on a standard desktop PC? Why or why not.
public int ComputeLCS() {
 int n = str1.Length;
 int m = str2.Length;

 int[,] opt = new int[n + 1, m + 1];
 for (int i = 0; i <= n; i++)
 opt[i, 0] = 0;
 for (int j = 0; j <= m; j++)
 opt[0, j] = 0;

 for (int i = 1; i <= n; i++)
 for (int j = 1; j <= m; j++)
 if (str1[i - 1] == str2[j - 1])
 opt[i, j] = opt[i - 1, j - 1] + 1;
 else if (opt[i - 1, j] >= opt[i, j - 1])
 opt[i, j] = opt[i - 1, j];
 else
 opt[i, j] = opt[i, j - 1];

 return opt[n, m];
}
N = 17000

Runtime should be about 5 seconds*

* Personal PC, 6 years old
public int SpaceEfficientLCS() {
 int n = str1.Length;
 int m = str2.Length;
 int[] prevRow = new int[m + 1];
 int[] currRow = new int[m + 1];

 for (int j = 0; j <= m; j++)
 prevRow[j] = 0;

 for (int i = 1; i <= n; i++) {
 currRow[0] = 0;
 for (int j = 1; j <= m; j++) {
 if (str1[i - 1] == str2[j - 1])
 currRow[j] = prevRow[j - 1] + 1;
 else if (prevRow[j] >= currRow[j - 1])
 currRow[j] = prevRow[j];
 else
 currRow[j] = currRow[j - 1];
 }
 for (int j = 1; j <= m; j++)
 prevRow[j] = currRow[j];
 }

 return currRow[m];
}
N = 300000

N: 10000 Base 2 Length: 8096 Gamma: 0.8096 Runtime:00:00:01.86
N: 20000 Base 2 Length: 16231 Gamma: 0.81155 Runtime:00:00:07.45
N: 30000 Base 2 Length: 24317 Gamma: 0.8105667 Runtime:00:00:16.82
N: 40000 Base 2 Length: 32510 Gamma: 0.81275 Runtime:00:00:29.84
N: 50000 Base 2 Length: 40563 Gamma: 0.81126 Runtime:00:00:46.78
N: 60000 Base 2 Length: 48700 Gamma: 0.8116667 Runtime:00:01:08.06
N: 70000 Base 2 Length: 56824 Gamma: 0.8117715 Runtime:00:01:33.36

N: 300000 Base 2 Length: 243605 Gamma: 0.8120167 Runtime:00:28:07.32
Observations about the Algorithm

• The computation can be done in $O(m+n)$ space if we only need one column of the Opt values or Best Values

• The algorithm can be run from either end of the strings
Computing LCS in $O(nm)$ time and $O(n+m)$ space

- Divide and conquer algorithm
- Recomputing values used to save space
Divide and Conquer Algorithm

- Where does the best path cross the middle column?

- For a fixed i, and for each j, compute the LCS that has a_i matched with b_j
Constrained LCS

- $\text{LCS}_{i,j}(A,B)$: The LCS such that
 - a_1,\ldots,a_i paired with elements of b_1,\ldots,b_j
 - a_{i+1},\ldots,a_m paired with elements of b_{j+1},\ldots,b_n

- $\text{LCS}_{4,3}(\text{abbacbb}, \text{cbbaa})$
A = RRSSR\textcolor{red}{T}T\textcolor{red}{T}R\textcolor{red}{T}\textcolor{red}{S}
B = RTSRR\textcolor{red}{R}R\textcolor{red}{R}\textcolor{red}{S}TSTST

Compute $LCS_{5,0}(A,B)$, $LCS_{5,1}(A,B)$, \ldots, $LCS_{5,9}(A,B)$
A = RRSSRTTRTS
B = RTSRRSTST

Compute LCS_{5,0}(A,B), LCS_{5,1}(A,B), ..., LCS_{5,9}(A,B)
Computing the middle column

- From the left, compute LCS\((a_1\ldots a_{m/2}, b_1\ldots b_j)\)
- From the right, compute LCS\((a_{m/2+1}\ldots a_m, b_{j+1}\ldots b_n)\)
- Add values for corresponding \(j\)’s

- Note – this is space efficient
Divide and Conquer

- \(A = a_1, \ldots, a_m \quad \text{B = } b_1, \ldots, b_n \)
- Find \(j \) such that
 - \(\text{LCS}(a_1 \ldots a_{m/2}, b_1 \ldots b_j) \) and
 - \(\text{LCS}(a_{m/2+1} \ldots a_m, b_{j+1} \ldots b_n) \) yield optimal solution
- Recurse
Algorithm Analysis

- $T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm$
Prove by induction that
\[T(m, n) \leq 2cmn \]

\[T(m, n) = T(m/2, j) + T(m/2, n-j) + cnm \]
Memory Efficient LCS Summary

• We can afford $O(nm)$ time, but we can’t afford $O(nm)$ space
• If we only want to compute the length of the LCS, we can easily reduce space to $O(n+m)$
• Avoid storing the value by recomputing values
 – Divide and conquer used to reduce problem sizes