
1

CSE 421

Algorithms

Richard Anderson

Lecture 19

Dynamic Programming

Announcements

• Nov 11, No class (holiday)

One dimensional dynamic

programming: Interval scheduling

Opt[j] = max (Opt[j – 1], wj + Opt[p[j]])

Two dimensional dynamic

programming

Optk[j] = min i { Optk-1[i] + Ei,j } for 0 < i < j

K-segment linear approximation

4

3

2

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Two dimensional dynamic

programming

4

3

2

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – wj] + wj)

Subset sum and knapsack

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – wj] + vj)

Alternate approach for Subset

Sum
• Alternate formulation of Subset Sum dynamic

programming algorithm
– Sum[i, K] = true if there is a subset of {w1,…wi} that

sums to exactly K, false otherwise

– Sum [i, K] = Sum [i -1, K] OR Sum[i - 1, K - wi]

– Sum [0, 0] = true; Sum[i, 0] = false for i != 0

• To allow for negative numbers, we need to fill in
the array between Kmin and Kmax

2

Run time for Subset Sum

• With n items and target sum K, the run

time is O(nK)

• If K is 1,000,000,000,000,000,000,000,000

this is very slow

• Alternate brute force algorithm: examine

all subsets: O(n2n)

Optimal line breaking

Optimal Line Breaking

• Words have length wi, line length L

• Penalty related to white space or overflow

of the line

– Quadratic measure often used

• Pen(i, j): Penalty for putting wi, wi+1,…,wj

on the same line

• Opt[k, m]: minimum penalty for ending line

k with wm

String approximation

• Given a string S, and a library of strings B

= {b1, …bm}, construct an approximation of

the string S by using copies of strings in B.

B = {abab, bbbaaa, ccbb, ccaacc}

S = abaccbbbaabbccbbccaabab

Formal Model

• Strings from B assigned to non-

overlapping positions of S

• Strings from B may be used multiple times

• Cost of d for unmatched character in S

• Cost of g for mismatched character in S

– MisMatch(i, j) – number of mismatched

characters of bj, when aligned starting with

position i in s.

Design a Dynamic Programming

Algorithm for String Approximation

• Compute Opt[1], Opt[2], . . ., Opt[n]

• What is Opt[k]?

Target string S = s1s2…sn

Library of strings B = {b1,…,bm}

MisMatch(i,j) = number of mismatched characters with b j when aligned

starting at position i of S.

3

Opt[k] = fun(Opt[0],…,Opt[k-1])

• How is the solution determined from sub

problems?

Target string S = s1s2…sn

Library of strings B = {b1,…,bm}

MisMatch(i,j) = number of mismatched characters with b j when aligned

starting at position i of S.

Solution

for i := 1 to n

Opt[k] = Opt[k-1] + d;

for j := 1 to |B|

p = i – len(bj);

Opt[k] = min(Opt[k], Opt[p-1] + g MisMatch(p, j));

Longest Common Subsequence

• C=c1…cg is a subsequence of A=a1…am if

C can be obtained by removing elements

from A (but retaining order)

• LCS(A, B): A maximum length sequence

that is a subsequence of both A and B

ocurranec

occurrence

attacggct

tacgacca

Determine the LCS of the following

strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

• Align sequences with gaps

• Charge dx if character x is unmatched

• Charge gxy if character x is matched to

character y

CAT TGA AT

CAGAT AGGA

Note: the problem is often expressed as a minimization problem,

with gxx = 0 and dx > 0

LCS Optimization

• A = a1a2…am

• B = b1b2…bn

• Opt[j, k] is the length of

LCS(a1a2…aj, b1b2…bk)

4

Optimization recurrence

If aj = bk, Opt[j,k] = 1 + Opt[j-1, k-1]

If aj != bk, Opt[j,k] = max(Opt[j-1,k], Opt[j,k-1])

Give the Optimization Recurrence

for the String Alignment Problem

• Charge dx if character x is unmatched

• Charge gxy if character x is matched to

character y

Opt[j, k] =

Let aj = x and bk = y

Express as minimization

Dynamic Programming

Computation
Code to compute Opt[j,k]

Storing the path information

A[1..m], B[1..n]

for i := 1 to m Opt[i, 0] := 0;

for j := 1 to n Opt[0,j] := 0;

Opt[0,0] := 0;

for i := 1 to m

for j := 1 to n

if A[i] = B[j] { Opt[i,j] := 1 + Opt[i-1,j-1]; Best[i,j] := Diag; }

else if Opt[i-1, j] >= Opt[i, j-1]

{ Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; }

else { Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; }

a1…am

b
1
…

b
n

How good is this algorithm?

• Is it feasible to compute the LCS of two

strings of length 300,000 on a standard

desktop PC? Why or why not.

