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CSE 421

Algorithms

Richard Anderson

Lecture 19

Dynamic Programming

Announcements

• Nov 11,  No class  (holiday)

One dimensional dynamic 

programming:  Interval scheduling

Opt[ j ] = max (Opt[ j – 1], wj + Opt[ p[ j ] ]) 

Two dimensional dynamic 

programming

Optk[ j ] = min i { Optk-1[ i ] + Ei,j } for 0 < i < j

K-segment linear approximation
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Two dimensional dynamic 

programming
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Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + wj)

Subset sum and knapsack

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + vj)

Alternate approach for Subset 

Sum
• Alternate formulation of Subset Sum dynamic 

programming algorithm
– Sum[i, K] = true if there is a subset of {w1,…wi} that 

sums to exactly K,  false otherwise

– Sum [i, K] = Sum [i -1, K] OR Sum[i - 1, K - wi]

– Sum [0, 0] = true;  Sum[i, 0] = false for i != 0

• To allow for negative numbers, we need to fill in 
the array between Kmin and Kmax
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Run time for Subset Sum

• With n items and target sum K, the run 

time is O(nK)

• If K is 1,000,000,000,000,000,000,000,000 

this is very slow

• Alternate brute force algorithm:  examine 

all subsets: O(n2n)

Optimal line breaking

Optimal Line Breaking

• Words have length wi, line length L

• Penalty related to white space or overflow 

of the line

– Quadratic measure often used

• Pen(i, j):  Penalty for putting wi, wi+1,…,wj

on the same line

• Opt[k, m]: minimum penalty for ending line 

k with wm

String approximation

• Given a string S, and a library of strings B 

= {b1, …bm}, construct an approximation of 

the string S by using copies of strings in B. 

B = {abab, bbbaaa, ccbb, ccaacc}

S = abaccbbbaabbccbbccaabab

Formal Model

• Strings from B assigned to non-

overlapping positions of S

• Strings from B may be used multiple times

• Cost of d for unmatched character in S

• Cost of g for mismatched character in S

– MisMatch(i, j) – number of mismatched 

characters of bj, when aligned starting with 

position i in s.

Design a Dynamic Programming 

Algorithm for String Approximation

• Compute Opt[1], Opt[2], . . ., Opt[n]

• What is Opt[k]?

Target string S = s1s2…sn

Library of strings B = {b1,…,bm}

MisMatch(i,j) = number of mismatched characters with b j when aligned

starting at position i of S.
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Opt[k] = fun(Opt[0],…,Opt[k-1])

• How is the solution determined from sub 

problems?

Target string S = s1s2…sn

Library of strings B = {b1,…,bm}

MisMatch(i,j) = number of mismatched characters with b j when aligned

starting at position i of S.

Solution

for i := 1 to n

Opt[k] = Opt[k-1] + d;

for j := 1 to |B|

p = i – len(bj);

Opt[k] = min(Opt[k],  Opt[p-1] + g MisMatch(p, j));

Longest Common Subsequence

• C=c1…cg is a subsequence of A=a1…am if 

C can be obtained by removing elements 

from A (but retaining order)

• LCS(A, B):  A maximum length sequence 

that is a subsequence of both A and B

ocurranec

occurrence

attacggct

tacgacca

Determine the LCS of the following 

strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

• Align sequences with gaps

• Charge dx if character x is unmatched

• Charge gxy if character x is matched to 

character y

CAT TGA  AT

CAGAT AGGA

Note: the problem is often expressed as a minimization problem,  

with gxx = 0 and dx > 0

LCS Optimization

• A = a1a2…am

• B = b1b2…bn

• Opt[ j, k] is the length of          

LCS(a1a2…aj, b1b2…bk)
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Optimization recurrence

If aj = bk,  Opt[ j,k ] = 1 + Opt[ j-1, k-1 ]

If aj != bk,  Opt[ j,k] = max(Opt[ j-1,k], Opt[ j,k-1])

Give the Optimization Recurrence 

for the String Alignment Problem

• Charge dx if character x is unmatched

• Charge gxy if character x is matched to 

character y

Opt[ j, k] = 

Let aj = x and bk = y        

Express as minimization

Dynamic Programming 

Computation
Code to compute Opt[j,k] 

Storing the path information

A[1..m],  B[1..n]

for i := 1 to m     Opt[i, 0] := 0;

for j := 1 to n     Opt[0,j] := 0;

Opt[0,0] := 0;

for i := 1 to m

for j := 1 to n

if A[i] = B[j]  {  Opt[i,j] := 1 + Opt[i-1,j-1];  Best[i,j] := Diag; }

else if Opt[i-1, j] >= Opt[i, j-1]

{  Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; }

else        {  Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; }

a1…am

b
1
…

b
n

How good is this algorithm?

• Is it feasible to compute the LCS of two 

strings of length 300,000 on a standard 

desktop PC?  Why or why not.


