CSE 421
Algorithms

Richard Anderson
Lecture 19
Dynamic Programming

Announcements

* Nov 11, No class (holiday)

One dimensional dynamic
programming: Interval scheduling

Opt[j] = max (Opt[j—1], w; + Opt[ p[j]])

Two dimensional dynamic
programming

K-segment linear approximation
Opt[j]=min;{Opt,[i]+Ej}forO<i<j

PN W s

Two dimensional dynamic
programming

Subset sum and knapsack
Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w] +w)
Opt[ j, K] = max(Opt[ j — 1, K], Opt[j — 1, K —w] + v}

PN W~

Alternate approach for Subset
Sum

+ Alternate formulation of Subset Sum dynamic
programming algorithm
— Suml[i, K] = true if there is a subset of {w,,...w} that
sums to exactly K, false otherwise
— Sum [i, K] = Sum [i -1, K] OR Sum[i - 1, K - w]
— Sum [0, 0] = true; Sumli, O] = false fori!=0

* To allow for negative numbers, we need to fill in
the array between K., and K.,




Run time for Subset Sum

» With n items and target sum K, the run
time is O(nK)

If K is 1,000,000,000,000,000,000,000,000
this is very slow

Alternate brute force algorithm: examine
all subsets: O(n2")

Optimal line breaking

Element distinctness has been a particular focus of
lower bound analysis. The first time-space tradeoff lower
bounds for the problem apply to structured algorithms.
Borodin et al. [13] gave a time-space tradeoff lower bound
for computing ED on comparison branching programs
of T € Qn*?/S'?) and, since S > log,n, T €
Q(n*?\/logn/S). Yao [32] improved this to a near-optimal
T € Qn?*~<(")/8), where e(n) = 5/(Inn)'/2. Since these
lower bounds apply to the average case for randomly ordered
inputs, by Yao's lemma, they also apply to randomized
comparison branching programs. These bounds also triv-
ially apply to all frequency moments since, for k # 1,
ED(x) = niff Fi(x) = n. This near-quadratic lower bound
seemed to suggest that the complexity of £'D and F}. should
closely track that of sorting.

Optimal Line Breaking

* Words have length w; line length L

Penalty related to white space or overflow

of the line

— Quadratic measure often used

* Pen(j, j): Penalty for putting w, Wi,,...,W;
on the same line

* Opt[k, m]: minimum penalty for ending line
k with w,,

String approximation

* Given a string S, and a library of strings B
={b,, ...b,}, construct an approximation of
the string S by using copies of strings in B.

B = {abab, bbbaaa, ccbb, ccaacc}

S = abaccbbbaabbccbbccaabab

Formal Model

« Strings from B assigned to non-
overlapping positions of S

+ Strings from B may be used multiple times

+ Cost of & for unmatched character in S

+ Cost of y for mismatched character in S

— MisMatch(i, j) — number of mismatched
characters of bj, when aligned starting with
positioniin s.

Design a Dynamic Programming
Algorithm for String Approximation

« Compute Opt[1], Opt[2], . . ., Opt[n]
* What is Opt[k]?

Target string S = s;5,...s,

Library of strings B = {b; ...,b,,}

MisMatch(i,j) = number of mismatched characters with b; when aligned
starting at position i of S.




Opt[k] = fun(Opt[0],...,Opt[k-1])

¢ How is the solution determined from sub
problems?

Target string S =s;5;...s,

Library of strings B = {b, ...,by}

MisMatch(i,j) = number of mismatched characters with b; when aligned
starting at position i of S.

Solution

fori:=1ton
Opt[k] = Opt[k-1] + §;
forj:=1to |B|

p =i-len(b);
Opt[k] = min(Opt[k], Opt[p-1] +y MisMatch(p, j));

Longest Common Subsequence

*+ C=c,...cy is a subsequence of A=a,...ay, if
C can be obtained by removing elements
from A (but retaining order)

* LCS(A, B): A maximum length sequence
that is a subsequence of both A and B

ocurranec attacggct

occurrence tacgacca

Determine the LCS of the following
strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

« Align sequences with gaps
CAT TGA AT
CAGAT AGGA

» Charge 3, if character x is unmatched

* Charge v,, if character x is matched to
charactery

Note: the problem is often expressed as a minimization problem,
with v, =0 and §, >0

LCS Optimization

* A=a,a,...a,
* B=Db;b,...b,

* Opt[ ], K] is the length of
LCS(a,a,..-8;, byb,...by)




Optimization recurrence

If 3;=b,, Opt[jk]=1+O0pt[j-1, k1]

If a;!=b,, Opt[],k] =max(Opt[j-1,k], Opt[ j,k-1])

Give the Optimization Recurrence
for the String Alignment Problem

» Charge 9, if character x is unmatched

« Charge v,, if character x is matched to
charactery

Opt[j, k] =

Leta=xandb, =y
Express as minimization

Dynamic Programming

Computation
L% %% %Y
L% %% %Y
%% %Y
%% %%
% %% %Y
% %% %%

Code to compute Opt[j,k]

Storing the path information

All.m], B[1..n]

fori:=1tom Optfi, 0] :=0; 'QC
forj:=1ton Opt[0,]:=0; =
Opt[0,0] := 0;

fori:=1tom a;...ay
forj:=1ton
if All] = B[j] { Opt[i,j] := 1 + Opt[i-1,j-1]; Best[ij] := Diag; }
else if Opt[i-1, j] >= Opt[i, j-1]
{ Optfi, j] := Opt[i-1, j], Best[i,j] := Left; }
else { Optli, j] := Opt[i, j-1], Best[i,j] := Down; }

How good is this algorithm?

+ Is it feasible to compute the LCS of two
strings of length 300,000 on a standard
desktop PC? Why or why not.




