CSE 421 Algorithms

Richard Anderson

Lecture 19

Dynamic Programming

Announcements

- Nov 11, No class (holiday)

One dimensional dynamic

 programming: Interval schedulingOpt[j] = max (Opt[j - 1], w $\mathrm{w}_{\mathrm{j}}+\operatorname{Opt[~p[j]~])~}$

Two dimensional dynamic programming

K-segment linear approximation Opt $_{\mathrm{k}}[\mathrm{j}]=\min _{\mathrm{i}}\left\{\right.$ Opt $\left._{\mathrm{k}-1}[\mathrm{i}]+\mathrm{E}_{\mathrm{i}, \mathrm{j}}\right\}$ for $0<\mathrm{i}<\mathrm{j}$

4																	
3																	
2																	
1																	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Two dimensional dynamic programming

Subset sum and knapsack
$\operatorname{Opt}[\mathrm{j}, \mathrm{K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$
Opt [$\mathrm{j}, \mathrm{K}]=\max \left(\mathrm{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{v}_{\mathrm{j}}\right)$

4																	
3																	
2																	
1																	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Alternate approach for Subset Sum

- Alternate formulation of Subset Sum dynamic programming algorithm
- Sum $[i, K]=$ true if there is a subset of $\left\{w_{1}, \ldots w_{i}\right\}$ that sums to exactly K , false otherwise
- Sum $[i, K]=\operatorname{Sum}[i-1, K]$ OR Sum $\left[i-1, K-w_{i}\right]$
- Sum $[0,0]=$ true; Sum[i, 0] = false for $i!=0$
- To allow for negative numbers, we need to fill in the array between $\mathrm{K}_{\text {min }}$ and $\mathrm{K}_{\text {max }}$

Run time for Subset Sum

- With n items and target sum K , the run time is $\mathrm{O}(\mathrm{nK})$
- If K is $1,000,000,000,000,000,000,000,000$ this is very slow
- Alternate brute force algorithm: examine all subsets: $\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$

Optimal line breaking

Element distinctness has been a particular focus of lower bound analysis. The first time-space tradeoff lower bounds for the problem apply to structured algorithms. Borodin et al. [13] gave a time-space tradeoff lower bound for computing $E D$ on comparison branching programs of $T \in \Omega\left(n^{3 / 2} / S^{1 / 2}\right)$ and, since $S \geq \log _{2} n, T \in$ $\Omega\left(n^{3 / 2} \sqrt{\log n} / S\right)$. Yao [32] improved this to a near-optimal $T \in \Omega\left(n^{2-\epsilon(n)} / S\right)$, where $\epsilon(n)=5 /(\ln n)^{1 / 2}$. Since these lower bounds apply to the average case for randomly ordered inputs, by Yao's lemma, they also apply to randomized comparison branching programs. These bounds also trivially apply to all frequency moments since, for $k \neq 1$, $E D(x)=n$ iff $F_{k}(x)=n$. This near-quadratic lower bound seemed to suggest that the complexity of $E D$ and F_{k} should closely track that of sorting.

Optimal Line Breaking

- Words have length w_{i}, line length L
- Penalty related to white space or overflow of the line
- Quadratic measure often used
- Pen(i, j): Penalty for putting $\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}, \ldots, \mathrm{w}_{\mathrm{j}}$ on the same line
- Opt[k, m]: minimum penalty for ending line k with w_{m}

String approximation

- Given a string S, and a library of strings B
$=\left\{b_{1}, \ldots b_{m}\right\}$, construct an approximation of the string S by using copies of strings in B.
$B=\{a b a b, b b b a a a, c c b b, c c a a c c\}$
$S=a b a c c b b b a a b b c c b b c c a a b a b$

Formal Model

- Strings from B assigned to nonoverlapping positions of S
- Strings from B may be used multiple times
- Cost of δ for unmatched character in S
- Cost of γ for mismatched character in S
- MisMatch(i, j) - number of mismatched characters of b_{j}, when aligned starting with position in s.

Design a Dynamic Programming Algorithm for String Approximation

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Target string $\mathrm{S}=\mathrm{s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{n}}$
Library of strings $B=\left\{b_{1}, \ldots, b_{m}\right\}$
MisMatch(i,j) = number of mismatched characters with b_{j} when aligned starting at position i of S.

Opt[k] = fun(Opt[0],..,Opt[k-1])

- How is the solution determined from sub problems?

Target string $\mathrm{S}=\mathrm{s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{n}}$
Library of strings $B=\left\{b_{1}, \ldots, b_{m}\right\}$
MisMatch(i,j) = number of mismatched characters with b_{j} when aligned starting at position i of S.

Solution

for $\mathrm{i}:=1$ to n

$$
\begin{aligned}
& \text { Opt }[k]=\operatorname{Opt}[k-1]+\delta ; \\
& \text { for } j:=1 \text { to }|B| \\
& \qquad p=i-\operatorname{len}\left(b_{j}\right) ;
\end{aligned}
$$

$$
\operatorname{Opt}[k]=\min (\operatorname{Opt}[k], \quad \operatorname{Opt}[p-1]+\gamma \operatorname{MisMatch}(p, j)) ;
$$

Longest Common Subsequence

- $C=c_{1} \ldots c_{g}$ is a subsequence of $A=a_{1} \ldots a_{m}$ if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B
attacggct
occurrence
tacgacca

Determine the LCS of the following strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

- Align sequences with gaps CAT TGA AT CAGAT AGGA
- Charge δ_{x} if character x is unmatched
- Charge $\gamma_{x y}$ if character x is matched to character y

Note: the problem is often expressed as a minimization problem, with $\gamma_{\mathrm{xx}}=0$ and $\delta_{\mathrm{x}}>0$

LCS Optimization

- $A=a_{1} a_{2} \ldots a_{m}$
- $B=b_{1} b_{2} \ldots b_{n}$
- Opt[$\mathrm{j}, \mathrm{k}]$ is the length of $\operatorname{LCS}\left(a_{1} a_{2} \ldots a_{j}, b_{1} b_{2} \ldots b_{k}\right)$

Optimization recurrence

If $\mathrm{a}_{\mathrm{j}}=\mathrm{b}_{\mathrm{k}}, \operatorname{Opt}[\mathrm{j}, \mathrm{k}]=1+\operatorname{Opt}[\mathrm{j}-1, \mathrm{k}-1]$
If $\mathrm{a}_{\mathrm{j}}!=\mathrm{b}_{\mathrm{k}}, \operatorname{Opt}[\mathrm{j}, \mathrm{k}]=\max (\operatorname{Opt}[j-1, \mathrm{k}], \operatorname{Opt}[j, k-1])$

Give the Optimization Recurrence for the String Alignment Problem

- Charge δ_{x} if character x is unmatched
- Charge $\gamma_{x y}$ if character x is matched to character y
Opt [j, k] =

Let $a_{j}=x$ and $b_{k}=y$ Express as minimization

Dynamic Programming Computation

Code to compute Opt[j,k]

Storing the path information

$\mathrm{A}[1 . . \mathrm{m}], \mathrm{B}[1 . . \mathrm{n}]$

$$
\begin{aligned}
& \text { for } \mathrm{i}:=1 \text { to } \mathrm{m} \quad \text { Opt }[i, 0]:=0 ; \\
& \text { for } \mathrm{j}:=1 \text { to } \mathrm{n} \quad \operatorname{Opt}[0, \mathrm{j}]:=0 ; \\
& \text { Opt[} 0,0]:=0 ; \\
& \text { for } \mathrm{i}:=1 \text { to } \mathrm{m}
\end{aligned}
$$

$$
\text { for } \mathrm{j}:=1 \text { to } \mathrm{n}
$$

$$
\begin{aligned}
& \text { if } A[i]=B[j]\{\text { Opt[i,j] := } 1+\text { Opt[i-1,j-1]; Best[i,j] := Diag; \} } \\
& \text { else if Opt[i-1, j] >= Opt[i, j-1] } \\
& \text { \{ Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; \} } \\
& \text { else } \quad\{\text { Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; \} }
\end{aligned}
$$

How good is this algorithm?

- Is it feasible to compute the LCS of two strings of length 300,000 on a standard desktop PC? Why or why not.

