Dynamic Programming

Weighted Interval Scheduling

Given a collection of intervals \(I_1, \ldots, I_n \) with weights \(w_1, \ldots, w_n \), choose a maximum weight set of non-overlapping intervals.

Optimality Condition

- \(\text{Opt}[j] \) is the maximum weight independent set of intervals \(I_1, I_2, \ldots, I_j \)
- \(\text{Opt}[j] = \max(\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \)
 - Where \(p[j] \) is the index of the last interval which finishes before \(I_j \) starts

Algorithm

\[
\text{MaxValue}(j) = \\
\begin{cases}
0 & \text{if } j = 0 \\
\max(\text{MaxValue}(j-1), w_j + \text{MaxValue}(p[j])) & \text{otherwise}
\end{cases}
\]

Worst case run time: \(2^n \)

A better algorithm

- \(M[j] \) initialized to \(-1\) before the first recursive call for all \(j \)

\[
\text{MaxValue}(j) = \\
\begin{cases}
0 & \text{if } j = 0 \\
\text{MaxValue}(j) & \text{if } M[j] = -1 \\
\max(\text{MaxValue}(j-1), w_j + \text{MaxValue}(p[j])) & \text{otherwise}
\end{cases}
\]

Iterative Algorithm

Express the MaxValue algorithm as an iterative algorithm

\[
\text{MaxValue}(
\}
\]
Fill in the array with the Opt values

\[
\text{Opt}[j] = \max (\text{Opt}[j-1], w_j + \text{Opt}[p[j]])
\]

Computing the solution

\[
\text{Opt}[j] = \max (\text{Opt}[j-1], w_j + \text{Opt}[p[j]])
\]

Record which case is used in Opt computation

Dynamic Programming

- The most important algorithmic technique covered in CSE 421
- Key ideas
 - Express solution in terms of a polynomial number of sub problems
 - Order sub problems to avoid recomputation

Optimal linear interpolation

\[
\text{Error} = \sum (y_i - ax_i - b)^2
\]

What is the optimal linear interpolation with three line segments

What is the optimal linear interpolation with two line segments
What is the optimal linear interpolation with \(n \) line segments

Notation
- Points \(p_1, p_2, \ldots, p_n \) ordered by \(x \)-coordinate \((p_i = (x_i, y_i))\)
- \(E_{ij} \) is the least squares error for the optimal line interpolating \(p_i, \ldots p_j \)

Optimal interpolation with two segments
- Give an equation for the optimal interpolation of \(p_1, \ldots, p_n \) with two line segments
- \(E_{ij} \) is the least squares error for the optimal line interpolating \(p_i, \ldots p_j \)

Optimal interpolation with \(k \) segments
- Optimal segmentation with three segments
 - \(\min_{i,j} \{ E_{1i} + E_{ij} + E_{jn} \} \)
 - \(O(n^2) \) combinations considered
- Generalization to \(k \) segments leads to considering \(O(n^{k-1}) \) combinations

Optimal sub-solution property
- Optimal solution with \(k \) segments extends an optimal solution of \(k-1 \) segments on a smaller problem

Opt\(k \)[\(j \)]: Minimum error approximating \(p_1 \ldots p_j \) with \(k \) segments

How do you express Opt\(k \)[\(j \)] in terms of Opt\(k-1 \)[1],…,Opt\(k-1 \)[\(j \)]?
Optimal multi-segment interpolation

Compute \(\text{Opt}[k, j] \) for \(0 < k < j < n \)

for \(j := 1 \) to \(n \)
\[
\text{Opt}[1, j] = E_{1,j};
\]
for \(k := 2 \) to \(n-1 \)
for \(j := 2 \) to \(n \)
\[
t := E_{1,j}
\]
for \(i := 1 \) to \(j - 1 \)
\[
t = \min (t, \text{Opt}[k-1, i] + E_{i,j})
\]
\[
\text{Opt}[k, j] = t
\]

Determining the solution

• When \(\text{Opt}[k,j] \) is computed, record the value of \(i \) that minimized the sum
• Store this value in an auxiliary array
• Use to reconstruct solution

Variable number of segments

• Segments not specified in advance
• Penalty function associated with segments
• Cost = Interpolation error + \(C \times \#\text{Segments} \)

Penalty cost measure

• \(\text{Opt}[j] = \min(E_{1,j}, \min_i (\text{Opt}[i] + E_{i,j} + P)) \)