Dynamic Programming

- Weighted Interval Scheduling
- Given a collection of intervals I_1, \ldots, I_n with weights w_1, \ldots, w_n, choose a maximum weight set of non-overlapping intervals

Intervals sorted by end time
Optimality Condition

- Opt[j] is the maximum weight independent set of intervals I_1, I_2, \ldots, I_j
 - Where $p[j]$ is the index of the last interval which finishes before I_j starts
Algorithm

MaxValue(j) =
 if j = 0 return 0
 else
 return max(MaxValue(j-1),
 w_j + MaxValue(p[j]))

Worst case run time: 2^n
A better algorithm

M[j] initialized to -1 before the first recursive call for all j

MaxValue(j) =
 if j = 0 return 0;
 else if M[j] != -1 return M[j];
 else
 M[j] = max(MaxValue(j-1), w_j + MaxValue(p[j]));
 return M[j];
Iterative Algorithm

Express the MaxValue algorithm as an iterative algorithm

MaxValue {

}
Fill in the array with the Opt values

\[
\text{Opt}[j] = \max (\text{Opt}[j - 1], w_j + \text{Opt}[p[j]])
\]
Computing the solution

$\text{Opt}[j] = \max (\text{Opt}[j - 1], w_j + \text{Opt}[p[j]])$

Record which case is used in Opt computation
Dynamic Programming

• The most important algorithmic technique covered in CSE 421

• Key ideas
 – Express solution in terms of a polynomial number of sub problems
 – Order sub problems to avoid recomputation
Optimal linear interpolation

Error = \sum (y_i - ax_i - b)^2
What is the optimal linear interpolation with three line segments
What is the optimal linear interpolation with two line segments?
What is the optimal linear interpolation with n line segments?
Notation

- Points \(p_1, p_2, \ldots, p_n \) ordered by x-coordinate \((p_i = (x_i, y_i)) \)
- \(E_{i,j} \) is the least squares error for the optimal line interpolating \(p_i, \ldots, p_j \)
Optimal interpolation with two segments

• Give an equation for the optimal interpolation of p_1, \ldots, p_n with two line segments

• $E_{i,j}$ is the least squares error for the optimal line interpolating p_i, \ldots, p_j
Optimal interpolation with k segments

- Optimal segmentation with three segments
 - Min\(_{i,j}\){E\(_{1,i}\) + E\(_{i,j}\) + E\(_{j,n}\)}
 - O(n\(^2\)) combinations considered

- Generalization to k segments leads to considering O(n\(^{k-1}\)) combinations
Opt_{k\left[j \right]} : Minimum error approximating \(p_1 \ldots p_j \) with \(k \) segments

How do you express \(\text{Opt}_{k \left[j \right]} \) in terms of \(\text{Opt}_{k-1\left[1\right]}, \ldots, \text{Opt}_{k-1\left[j\right]} \)?
Optimal sub-solution property

Optimal solution with \(k \) segments extends an optimal solution of \(k-1 \) segments on a smaller problem.
Optimal multi-segment interpolation

Compute $\text{Opt}[k, j]$ for $0 < k < j < n$

for $j := 1$ to n
\[\text{Opt}[1, j] = E_{1,j}; \]

for $k := 2$ to $n-1$

for $j := 2$ to n
\[t := E_{1,j}; \]
\[\text{for } i := 1 \text{ to } j-1 \]
\[t = \min (t, \text{Opt}[k-1, i] + E_{i,j}) \]
\[\text{Opt}[k, j] = t \]
Determining the solution

- When Opt\([k,j]\) is computed, record the value of \(i\) that minimized the sum
- Store this value in a auxiliary array
- Use to reconstruct solution
Variable number of segments

• Segments not specified in advance
• Penalty function associated with segments
• Cost = Interpolation error + C x #Segments
Penalty cost measure

• $\text{Opt}[j] = \min(E_{1,j}, \min_i(\text{Opt}[i] + E_{i,j} + P))$