CSE 421: Introduction to

‘ Algorithms

Fast Fourier Transform
Paul Beame

’ Integer Multiplication

= Given:
= Two n-bitintegers X and Y
s X=ay+ta;2+a,22+ ... +a,,2"2 +3,,2"
= Y=by+b,2+b,22+ ... +b, ,2"2+b, 2"
= Compute:
= 2n-1-bit integer XY
= XY =aghg + (aghy+aybo) 2 + (agh,+ay,b, +ayh,) 22
+.+ (anobpatangb,) 2278 + a, 4b,, , 2202
= Last time: Karatsuba’s Algorithm beats naive
algorithm, using O(n®) where a = log,3 = 1.59...

‘ Polynomial Multiplication

= Given:
= Degree n-1 polynomials P and Q
s P=a;+a; Xx+a,x2+ ... +a,,x"2+a,,x"
= Q=bg+byx+b,x2+ ... +b ,x"2+b ,x1
= Compute:
= Degree 2n-2 Polynomial P Q
= PQ =agbg + (aghy+asbo) x + (agh,+asb; +a,bo) x2
+ot @Dy atan b, o) X203 + g, b, X202
= Obvious Algorithm, just like Integer Mult.:

= Compute all ajb; and collect terms
= O (n?) time

’ Divide and Conquer

= Assume n=2k
=« P =P, + P, xk where P, and P, are degree k-1 polys
= Similarly Q = Q, + Q, x¥

= PQ = (Po+Px)(Qo*+Q:x¥)

= PQo + (P1Qo+PoQ)x* + P1Q x%

= Naive: 4 sub-problems of size k=n/2 plus linear
combining T(n)=4-T(n/2)+cn Solution T(n) = ®(n?)

= Karatsuba’s : 3instead 4: A « P,Q, B « P,Q;

C « (PytP1)(Q+Q,) and then C-A-B = P,Q,+P,Q,
s0 T(n) =3 T(n/2) + cn and T(n) = O(n%) where a = log,3 = 1.59...

Integer and Polynomial Multiplication

= Naive: ©(n?)
= Karatsuba: ®(n%-)
= Best known: ®(n log n)
= "Fast Fourier Transform”
= FFT widely used for signal processing
= Used in practice in symbolic manipulation systems
like Maple
= MUCH easier for Polynomial Multiplication than for
integer multiplication because of ugly details with
carries, etc.
= Schonhage-Strassen (1971) gives ®(n log n loglog n)
= Furer (2007) gives @(n log n 209" n)
= Harvey, van der Hoeven (2019) finally got ®(n log n)

Hints towards FFT:
Interpolation

2 points determine a unique line (degree 1)
3 points determine a unique parabola (degree 2)

Given set of values at n points
Can find unique degree n-1 polynomial
going through these points

Multiplying Polynomials by

‘ Evaluation & Interpolation

= Any degree n-1 polynomial R(y) is determined
by R(yo), ... R(y,.1) for any n distinct y,,...,y,.1

= To compute PQ (assume degree at most n/2-1)
= Evaluate P(y),..., P(Y,.1)
= Evaluate Q(Yo),-Q(Yn-1)
= Multiply values P(y;,)Q(y;) fori=0,...,n-1
= Interpolate to recover PQ

’ Interpolation

= Given values of degree n-1 polynomial R at n
distinct points yq,...,Yn1
= R(Yo)--:R(Yn1)
= Compute coefficients c,...,c,.; such that
a R(X)=Cy+C X+CoX2+...+C, X1
= System of linear equations in c,...,C,;
Co +C1Yo+Ca¥ o+ .. +C 1Yo =R (Yo) Known
Co +C1Y1H+CoY % F...+C 1Y, " =R(Y,)

unknown
2 a-
Co +C1Yn1tCo¥na®+ - +Ch1Yna"=R(Y 1)

Interpolation:
n equations in n unknowns

= Matrix form of the linear system
1 Yo Yo - Yo™* Co R(Yo)
1y y? .oyt C1 R(y1)
c, =] -

1 yn—l Yn—l2 Yn—ln_1 Cn—l R(yn—l)

= Fact: Determinant of the matrix is T (v;-y))
which is not 0 since points are distinct
= System has a unique solution c,,...,C,,

Hints towards FFT:

’ Evaluation & Interpolation

K ordinary polynomial
p: ";01?)1 ----- ";n/zl multiplication ©(n2) .
Q- 0sM1yee n/2-1 Ck(_za\bj I REEEE A I
-k
evaluation o interpolation
at Yo, Yna1 from Yo,....¥n1
0(?) 0(?)
point-wise
P(¥0).Q(Yo) multiplication R(Y0)<—P(Y0)-Q(Yo)

P(y2).Q(y1) of numbers O(n) R(y,)<P(y,)-Q(y,)

P(Vn—l).; .Q(yn—l)

ROYp)¢ PY00) Qo)

10

Karatsuba’s algorithm and evaluation

‘ and interpolation

= Karatsuba'’s algorithm can be thought of as a way of
multiplying two degree 1 polynomials (which have 2
coefficients) using only 3 multiplications
= PQ=(Py*+P,2)(Qo+Q;2)
=PyQq + (P1Qo+PQ1)z + P,Q,2?
= Evaluate at 0,1 plus compute P,Q;
= A=P(0)Q(0)= P,Q,
=« B=P,Q,
= C=P(1)Q(1)=(Po+P1)(Qo+Qy)
= Alternative: replace B by the following: Evaluate at -1
= D=P(-1)Q(-1)=(P, -P1)(Qo-Q1)
= Interpolating, product is A + (C-D)/2 z + [(C+D)/2-A] z?

’ Evaluation at Special Points

= Evaluation of polynomial at 1 point
takes O(n) time
= S0 2n points (naively) takes O(n?)—no
savings
= But the algorithm works no matter what the
points are...
= So...choose points that are related to
each other so that evaluation problems
can share subproblems

The key idea:

) ‘ Evaluate at related points

= P(x) = agta,x+a x2+agx3+a,x4+...+a, X"
= Qg +a X2 +aX 4+ QX2
+ a;x+agx® +agx® +...+a, X"
= Peven(xz) +X Podd(xz)
s P(-x)=a,-a;x+ax? -agx3+a,x*-... -a,,x"1
= ag ta X2 +a x4 +...+ a, ,x"?
- (a;x+agx® +agx® +...+a, 1 x"1)
= Peven(xz) -X Podd(xz)
where P,..(2) = ay +a,z +a,22 +...+ @, ,2"*1t

and P,u(2) =a,+azz+asz? +...+a, 2"
13

The key idea:
Evaluate at related points

= So... if we have half the points as negatives of the
other half
= 8, Vo= Yoo Ynea1= Yie-Yna= Yoo
then we can reduce the size n problem of evaluating
degree n-1 polynomial P at n points to evaluating 2
degree n/2 - 1 polynomials P, and P,44 at n/2
points yy?,...Y,,..> and recombine answers with O(1)
extra work per point

= But to use this idea recursively we need half of
Vo?,---Ynp.12 to be negatives of the other half
u If yn/42 = 'yozr say, then (yn/4/y0)2= -1
= Motivates use of complex numbers as evaluation
points

‘ Complex Numbers ,_ ,

C+d!_“.~~ l To multiply complex numbers:
L " a+bi 1. add angles
e+fi s p o\ 2. multiply lengths
-1 (all length 1 here)

e+fi = (a+bi)(c+di)

a+bi =cos 0 +i sin 6 = ei®

oni c+di =cos ¢ +i sin ¢ = e'®

erm=1 e+fi =cos (B+) +i sin (B+p) = €@+
em=-1

Let® = @, =€/ 2N
Ta @ = cos (2n/n) +i sin (2r/n)

S
®"=-1: i 0=1=@8

i2=-1
eZﬂ:i: 1

16

| ‘ Facts about w=e2% " for even n

= 0=eXMNifori=v-1

s 0"=1

- o)n/Z =-1

= @21 = - @l for all values of |

= 2 = eZ™/k where k=n/2

= @ = cos(2jan)+i sin(2jn/n) SO can compute with
powers of ®

= @ is aroot of x"-1= (X-1)(X"L4+x"2+...+1) =0
but for j#0, @/#1 so @ D+@(0-2) +.. +1=0

‘ ’ The key idea for n even

= P(0) = ayta,0ta,w’tazo’+a,ott.. +a, 0"t
= g, ta,0? +a,et +...+ a, ,0"?
+ a,0+a;0° +az@° +...+a, 0"t
= Peven((‘)z) +to Podd(coz)
= P(-e)=a,-a,0+a,0? -a;03+a,0*... -a, 0"
= gy ta,0? +a,0% +...+ a, ,0"2
- (a,0+a;m° +aso° +...+a, ;0" 1)
= Peven(mz) - o Podd(mz)
where Pg,q,(X) = ag +a,X +a,x2 +...+ a, ,x"21

and Pygy(X) = a;+agx +asx2 +...+a, x"21

The recursive idea for

‘ n a power of 2

= Goal:
= Evaluate P at 1,0,0%,0°%,...,0"*
= Now
= Poen and Pyyq have degree n/2-1 where
- P(mk):Peven(mZK)"'(okPodd((“)Zk)
= P('mk):Peven(OJZk)'mkPodd((DZk)

@ is e?m/k where k=n/2
e problems are of same
type but smaller size

= Recursive Algorithm
= Evaluate P, at 1,0%,0%...,.0"?

= Evaluate Py, at 1,0%,0%,...,0"?

= Combine to compute P at 1,0,0?,...,0"% !

= Combine to compute P at -1,-0,-&?,...,-@"21
(i_e_ at (1)"/2, G)n/2+1 , G)n/2+2‘___‘ mn-l)

’ Analysis and more

= Run-time
= T(n)=2-T(n/2)+cn so T(n)=0O(n log n)
= So much for evaluation ... what about
interpolation?
= Given
= 1,=R(1), r,=R(®@), r,=R(®?),..., r,,=R(@"1)
= Compute
Cgy Cq,--,Cpg S-t. R(X)=Cy+C X +...+C X1

20

Interpolation = Evaluation:

‘ strange but true

= Non-obvious fact:
= If we define a new polynomial
S(X) = ro+ riX +rx2+..+r,,X"1 where ro, ry, ...,
are the evaluations of R at1, o, ..., @"*
= Then ¢;=S(a)/n fork=0,...,n-1
= Relies on the fact the interpolation (inverse) matrix
has ij entry o @/n instead of '
= So...
= evaluate S at 1,0l,@?,...,0 "1 then divide each
answer by n to get the c,...,C4
= o behaves just like ® did so the same O(n log n)
evaluation algorithm applies !

21

Why this is called the discrete Fourier

’ transform

= Real Fourier series

= Given a real valued function f defined on [0,27]
the Fourier series for f is given by
f(x)=ay+a, cos(x) + a, cos(2x) +...+ a,, cos(mx) +...
where

12n
—— | f(X) cos(mx) dx
am_ZT[!() (mx)

= is the component of f of frequency m

= In signal processing and data compression one
ignores all but the components with large a,, and

there aren’t many since
22

Why this is called the discrete Fourier

‘ transform

= Complex Fourier series
= Given a function f defined on [0,2x]
the complex Fourier series for f is given by
f(z)=bytb, €'z + b, €2z +. .+ b emz+. .
where

127(
= — | f(z)e™* dz
bo= 5] 1)

is the component of f of frequency m

= If we discretize this integral using values at n

equally spaced points between 0 and 2 we get

_ = =
bn==>"f e®™" ==%"f o™ where f,=f(2kn/n)
Nico Nico

just like interpolation! 23

