CSE 421: Introduction to

| Algorithms

Fast Fourier Transform
Paul Beame

i Integer Multiplication

= Gilven:
= Two n-bit integers X and Y
= X=ag,+ta,2+a,2?+...+a,,2"%+a, 2"
= Y=by+b,2+b,22+ ... +Db 2" +Db, 2"
= Compute:
= 2n-1-bit integer XY
» XY =ayb, + (agb,+a,by) 2 + (agb,+a,b, +a,b,) 22
tot (@nobyatanab,) 227 +a, b 2272

= Last time: Karatsuba’'s Algorithm beats naive
algorithm, using O(n%) where a =log,3 = 1.59...

i Polynomial Multiplication

= Gilven:
= Degree n-1 polynomials P and Q
«P=a,+ta, x+a,x?+...+a,,x"?+a x"!
= Q=by+b x+b,x>+...+b X"?+Db_ x"!
= Compute:
» Degree 2n-2 Polynomial P Q
= PQ=agb, + (agb,ta;bg) X + (agb,+a,b, +a,b) X
tot (@b tan b,) x2S +a b X2

= Obvious Algorithm, just like Integer Mult.:

= Compute all a;b; and collect terms
= ®(n?) time

i Divide and Conquer

= Assume n=2k
= P=P,+ P, x¥ where P, and P, are degree k-1 polys
= Similarly Q = Q, + Q xX

= PQ = (PgtPx¥)(QptQ;x¥)
= PyQq + (P1Qg+PQ)xK + P Q x*

= Naive: 4 sub-problems of size k=n/2 plus linear
combining T(n)=4-T(n/2)+cn Solution T(n) = ®(n?)
= Karatsuba’s : 3instead 4: A <« P,Q, B « P,Q,

C <« (P,tP)(Q,+Q,) and then C-A-B = P,Q,+P,Q,
so T(n) =3 T(n/2) + cn and T(n) = O(n*) where a = log,3 = 1.59...

i Integer and Polynomial Multiplication

= Naive: ®(n?)
» Karatsuba: ©®(n1°9)
= Best known: ®(n log n)
= "Fast Fourier Transform”
« FFT widely used for signal processing

= Used in practice in symbolic manipulation systems
like Maple

« MUCH easier for Polynomial Multiplication than for
iInteger multiplication because of ugly details with
carries, etc.

= Schonhage-Strassen (1971) gives ®(n log n loglog n)
= Furer (2007) gives ®(n log n 209" n)
= Harvey, van der Hoeven (2019) finally got ®(n log n)

Hints towards FFT:

i Interpolation

2 points determine a unique line (degree 1)
3 points determine a unique parabola (degree 2)

Given set of values at n points
Can find unique degree n-1 polynomial
going through these points

Multiplying Polynomials by
i Evaluation & Interpolation

= Any degree n-1 polynomial R(y) Is determined
by R(Y,), ... R(y,.,) for any n distinct y,,...,y,1

= To compute PQ (assume degree at most n/2-1)
= Evaluate P(y,),..., P(y..1)
= Evaluate Q(y,),...,Q(Y,.1)
= Multiply values P(y;)Q(y;) fori=0,...,n-1
= Interpolate to recover PQ

i Interpolation

= Given values of degree n-1 polynomial R at n
distinct points y,,...,Y,.1

= R(Yo),--,R(Yn1)

= Compute coefficients c,,...,c,_, such that
s R(X)=cytC X+C,x%+...+C, XL

= System of linear equations in c,,...,C, ;
Co +C1YotCoYo*+...+C, 1Yo =R(Yo) own

Co +C1Y1H+CoY %+ +C, 1Y " =R(Y,)

unknown
2 1—
Cop +C1Yn1tCo¥Yn.1“t..+Cph.1¥Y 1" =R(Yn-1)

Interpolation:
i n equations in n unknowns

= Matrix form of the linear system

‘ |)
1 Yo Yo -0 Yot Co | R(Yo)

1y, y2 ..oyt Cq R(Y,)
C,

Ll Y1 Yna® - Yo"t | Cot R(yn-l)J

J \

= Fact: Determinant of the matrix is L1 (y-y))
which is not O since points are distinct
= System has a unique solution c,,...,C, ;

Hints towards FFT:
i Evaluation & Interpolation

ordinary polynomial

multiplication ®(n?)

Q b01b1 ----- bn/2-1 Ck «— Zalbj g R:C01C11--.:‘Cn-1
evaluation o Interpolation
at YosesYno1 from yy,....¥n1
O(?) O(?)
. point-wise
P(Yo),Q(YO) multiplication R(yo)(_P(yo)'Q(yo)

P(yl)!Q(yl) of numbers O(n) R(yl)(—P(yl)Q(yl)
P(yn-1)1Q(yn-1)

R(yn-l)(_P.(;/n-l)'Q(yn-l)

10

Karatsuba’s algorithm and evaluation

i and Interpolation

= Karatsuba’s algorithm can be thought of as a way of
multiplying two degree 1 polynomials (which have 2
coefficients) using only 3 multiplications
= PQ=(Pt+P,2)(Q+Q,2)
= PoQo *+ (P1Qo+PoQ4)z + P,Q,7°
» Evaluate at 0,1 plus compute P,Q,
= A =P(0)Q(0)= PyQq,
= B=P,Q,
= C=P(1)Q(1)=(Py+P)(Qp+Q)
= Alternative: replace B by the following: Evaluate at -1
= D=P(-1)Q(-1)=(Py-P1)(Qy-Q;)
= Interpolating, productis A + (C-D)/2 z + [(C+D)/2-A] z2

11

i Evaluation at Special Points

= Evaluation of polynomial at 1 point
takes O(n) time
= S0 2n points (naively) takes O(n?)—no
savings
= But the algorithm works no matter what the
points are...

= S0...choose points that are related to
each other so that evaluation problems
can share subproblems

12

The key Idea:
Evaluate at related points

= P(X) = agtax+ax?+azx3+a,x4+...+a, x"!
— 2 4 2
= 8y taX2 +a Xt +...+ a, X"
+ a,x+agx3 +ax® +...+a, x"1

= Poyen(?) + X Pogq()

eve
s P(-X)=a,-a,x+a,x2 -ax3+a,x4... -a, x"1
= a, ta, X% +a,x* +...+ a, ,X"?
- (@ x+agx3 +agxd +...+a, X"l
- I:)even(xz) - X Podd(Xz)
where P, ..(2) = a,ta,z +a,z? +...+ a, ,z"**

and POdd(Z) = a1+a32 +a522 +..-+an_1zn/2-l

13

The key Idea:
Evaluate at related points

|

= So... if we have half the points as negatives of the

other half

L€, Vo= Yo Y™ Yo Yna= Ynra
then we can reduce the size n problem of evaluating
degree n-1 polynomial P at n points to evaluating 2
degree n/2 - 1 polynomials P, and P_ 4 at n/2

points y.?,...Y,,..° and recombine answers with O(1)
extra work per point

But to use this idea recursively we need half of
Vo2,...Y 012 to be negatives of the other half

o If yn/42 - 'y021 say, then (yn/4/y0)2: -1
= Motivates use of complex numbers as evaluation
points

14

= -1

i Complex Numbers

1. add angles
2. multiply lengths
(all length 1 here)

e+fi = (a+bi)(c+di)

?"."i " a+bi=cos @ +i sin 0 = ei®
- c+di =cos ¢ +i sin @ = e'¢
e =1 e+fi =cos (0+@) +i sin (0+¢@) = e!(®+¢)

To multiply complex numbers:

15

i Primitive nth root of 1 w=w,=e! 2"

Let W = (Dn — el 21t /n
= cos (2n/n) +i sin (2rn/n)

16

i Facts about @=e?™ /" for even n

= @=e2™Nforji=+-1

s 0"'=1

- (Dn/2 = -1

= ®"2" = - @ for all values of |

= ©? = e2" /K where k=n/2

= @ = cos(2jn/n)+i sin(2jx/n) so can compute with
powers of ®

= @ is aroot of x"-1= (x-1)(x"1+x"-2+,..+1) =0
but for j#0, @#1 so @"-D+@!(-2) +,, +1=0

|

The key idea for n even

= P(o) = ao+a1(g)+a2(02+a30)3+a4(04+__.+an_10)n-1
= a,+a,0° +a,0* +...+ a, ,0"?
+ a,0+a;0° +a;0° +...+a, 0"
= Peven(®?) + ® Pyyq(@?)

= P(-0)=a,-a,0+a,0? -a;0%+a,o*... -a,,0"!
= a,+ta,0” +a,0* +...+ a, ,0"?
- (a,0ta;0° +asw® +...+a, ;0" 1)
- I:)even((l)z) - @ Podd(wz)
where P ., (X) = a, +a,x +a,x2+...+ a, ,x"??1

and POdd(X) = a1+a3x +a5X2 +..-+an_1xn/2-1

18

The recursive idea for

i n apower of 2

= Goal:
=« Evaluate P at 1,0,0?,®5,...,0"1
= Now
= P, and P, 44 have degree n/2-1 where

" P((’)k): Peven (®2k)+(’)kpodd (O)Zk)
" P('(Dk): I:)even ((‘)Zk)'(’)k I:)odd ((DZK)

= Recursive Algorithm __|erisex where kn/2
= Evaluate P at 1.2 o N2 So problems are qf same
even PR T ey type but smaller size

= Evaluate P_ , at 1,0%,0%,...,0"?
= Combine to compute P at 1,®,®?,...,0"?!

= Combine to compute P at -1,-0,-0?,...,-o"?1
(i_e_ ato"?2. @21 @hl2+2 (Dn'l)

19

i Analysis and more

= Run-time
s 1(N)=2-T(n/2)+cn so T(n)=0(n log n)
= S0 much for evaluation ... what about
Interpolation?
= Glven
= 1,=R(1), r;=R(®), r,=R(®?),..., r, ;=R(e"?)
= Compute
= Cg, Cq,..-,Cpq S.. R(X)=CytC X+...+C, X"

20

Interpolation = Evaluation:

i strange but true

= Non-obvious fact:

= If we define a new polynomial

S(X)=rg+r X +rx2+. . +r X"t whereryry, ..., 14
are the evaluations of R atl, o, ..., ®"!

= Then ¢;=S(w7)/n for k=0,...,n-1

= Relies on the fact the interpolation (inverse) matrix
has ij entry o /n instead of @'

= SO...

= evaluate S at 1,01,072,...,0 ("D then divide each

answer by n to get the c,,...,Cc,;

= ®*! behaves just like ® did so the same O(n log n)
evaluation algorithm applies !

21

Why this is called the discrete Fourier

i transform

= Real Fourier series

= Given a real valued function f defined on [0,2~x]
the Fourier series for f is given by
f(x)=a,+a, cos(x) + a, cos(2x) +...+ a,, cos(mx) +...
where

12n
—— | f(X) cos(mx) dx
2= | 109 OS(MY

= IS the component of f of frequency m

= In signal processing and data compression one
ignores all but the components with large a,, and
there aren’t many since

22

Why this is called the discrete Fourier

i transform

= Complex Fourier series

= Given a function f defined on [0,27]
the complex Fourier series for f is given by

f(z)=b,+b, €2+ b, ez +.+b_emz+,,

where 1 2r |
= — | f(2)e™* dz
b= ! (2)

IS the component of f of frequency m

= If we discretize this integral using values at n | 2n/n apart

equally spaced points between 0 and 27 we get

_ 1 n-1 _ 1 n-1
b == f, @™ ==%"f " where f,=f(2kn/n)

N o N o
just like interpolation!

23

