Announcements

- Midterm Wednesday
- Friday, FFT
- Monday, Chapter 6, Dynamic Programming

Divide and Conquer Algorithms

- Mergesort, Quicksort
- Strassen’s Algorithm
- Inversion counting
- Median
- Closest Pair Algorithm (2d)
- Integer Multiplication (Karatsuba’s Algorithm)
- FFT
 - Polynomial Multiplication
 - Convolution

Closest Pair Problem (2D)

- Given a set of points find the pair of points \(p, q \) that minimizes \(\text{dist}(p, q) \)

Divide and conquer

- If we solve the problem on two subsets, does it help? (Separate by median x coordinate)

Packing Lemma

Suppose that the minimum distance between points is at least \(\delta \), what is the maximum number of points that can be packed in a ball of radius \(\delta \)?
Combining Solutions

• Suppose the minimum separation from the sub problems is δ
• In looking for cross set closest pairs, we only need to consider points with δ of the boundary
• How many cross border interactions do we need to test?

A packing lemma bounds the number of distances to check

Details

• Preprocessing: sort points by y
• Merge step
 – Select points in boundary zone
 – For each point in the boundary
 • Find highest point on the other side that is at most δ above
 • Find lowest point on the other side that is at most δ below
 • Compare with the points in this interval (there are at most 6)

Identify the pairs of points that are compared in the merge step following the recursive calls

Algorithm run time

• After preprocessing:
 – $T(n) = cn + 2T(n/2)$

Integer Arithmetic

\[
\begin{align*}
9715480283945084383094856701043643845790217965702956767 \\
+ 12424310986234099057328075097179898430928779575277587977
\end{align*}
\]

Runtime for standard algorithm to add two n digit numbers:

\[
20950670930346809943185968668779409766717133476767930 \\
\times 592017509177763479677679342928097012308956679993010921
\]
Recursive Multiplication Algorithm (First attempt)

\[x = x_1 2^{n/2} + x_0 \]
\[y = y_1 2^{n/2} + y_0 \]
\[xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0) = x_1y_1 2^n + (x_1y_0 + x_0y_1)2^{n/2} + x_0y_0 \]

Recurrence:
Run time:

Simple algebra

\[x = x_1 2^{n/2} + x_0 \]
\[y = y_1 2^{n/2} + y_0 \]
\[xy = x_1y_1 2^n + (x_1y_0 + x_0y_1) 2^{n/2} + x_0y_0 \]
\[p = (x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0 \]

Karatsuba’s Algorithm

Multiply \(n \)-digit integers \(x \) and \(y \)

Let \(x = x_1 2^{n/2} + x_0 \) and \(y = y_1 2^{n/2} + y_0 \)

Recursively compute
\[a = x_1y_1 \]
\[b = x_0y_0 \]
\[p = (x_1 + x_0)(y_1 + y_0) \]
Return \(a2^n + (p - a - b)2^{n/2} + b \)

Recurrence: \(T(n) = 3T(n/2) + cn \)

Next week

• Dynamic Programming!