CSE 421 Algorithms

Lecture 15, Autumn 2019 Closest Pair, Multiplication

Announcements

- Midterm Wednesday
- Friday, FFT
- Monday, Chapter 6, Dynamic Programming

Divide and Conquer Algorithms

- · Mergesort, Quicksort
- Strassen's Algorithm
- Inversion counting
- Median
- Closest Pair Algorithm (2d)
- Integer Multiplication (Karatsuba's Algorithm)
- FFT
 - Polynomial Multiplication
 - Convolution

Packing Lemma

Suppose that the minimum distance between points is at least δ , what is the maximum number of points that can be packed in a ball of radius δ ?

Combining Solutions

- Suppose the minimum separation from the sub problems is $\boldsymbol{\delta}$
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?

Algorithm run time

After preprocessing:
T(n) = cn + 2 T(n/2)

Runtime for standard algorithm to multiply two n digit numbers:

Recursive Multiplication Algorithm (First attempt)

 $\begin{aligned} x &= x_1 \, 2^{n/2} + x_0 \\ y &= y_1 \, 2^{n/2} + y_0 \\ xy &= (x_1 \, 2^{n/2} + x_0) \, (y_1 \, 2^{n/2} + y_0) \\ &= x_1 y_1 \, 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0 \end{aligned}$

Recurrence:

Run time:

Simple algebra

$$\begin{split} & x = x_1 \ 2^{n/2} + x_0 \\ & y = y_1 \ 2^{n/2} + y_0 \\ & xy = \ x_1 y_1 \ 2^n + (x_1 y_0 + x_0 y_1) \ 2^{n/2} + x_0 y_0 \end{split}$$

 $p = (x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$

Karatsuba's Algorithm

Multiply n-digit integers x and y

Let $x = x_1 2^{n/2} + x_0$ and $y = y_1 2^{n/2} + y_0$ Recursively compute $a = x_1y_1$ $b = x_0y_0$ $p = (x_1 + x_0)(y_1 + y_0)$ Return $a2^n + (p - a - b)2^{n/2} + b$

Recurrence: T(n) = 3T(n/2) + cn

log₂ 3 = 1.58496250073...

Next week

• Dynamic Programming!