CSE 421
Algorithms
Richard Anderson
Lecture 14, Autumn 2019
Divide and Conquer

What you really need to know about recurrences
• Work per level changes geometrically with the level
 - Geometrically increasing (x > 1)
 - The bottom level wins
 - Geometrically decreasing (x < 1)
 - The top level wins
 - Balanced (x = 1)
 - Equal contribution

T(n) = aT(n/b) + nc
• Balanced: a = bc
 - T(n) = 4T(n/2) + n^2
• Increasing: a > bc
 - T(n) = 9T(n/8) + n
 - T(n) = 3T(n/4) + n^{1/2}
• Decreasing: a < bc
 - T(n) = 5T(n/8) + n
 - T(n) = 7T(n/2) + n^3

Divide and Conquer Algorithms
• Split into sub problems
• Recursively solve the problem
• Combine solutions
• Make progress in the split and combine stages
 - Quicksort – progress made at the split step
 - Mergesort – progress made at the combine step
• D&C Algorithms
 - Strassen’s Algorithm – Matrix Multiplication
 - Inversions
 - Median
 - Closest Pair
 - Integer Multiplication
 - FFT

How to multiply 2 x 2 matrices with 7 multiplications

<table>
<thead>
<tr>
<th>r</th>
<th>s</th>
<th>a</th>
<th>b</th>
<th>e</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>u</td>
<td>c</td>
<td>d</td>
<td>f</td>
<td>h</td>
</tr>
</tbody>
</table>

Where:

\[p_1 = (b - d)(f + h) \]
\[p_2 = (a + d)(e + h) \]
\[p_3 = (a - c)(e + g) \]
\[p_4 = (a + b)h \]
\[p_5 = a(g - h) \]
\[p_6 = d(f - e) \]
\[p_7 = (c + d)e \]

Strassen’s Algorithms
• Treat n x n matrices as 2 x 2 matrices of n/2 x n/2 submatrices
• Use Strassen’s trick to multiply 2 x 2 matrices with 7 multiplies
• Base case standard multiplication for single entries
• Recurrence: \[T(n) = 7T(n/2) + cn^2 \]
• Solution is \[O(7 \log n) = O(n^{\log 7}) \] which is about \[O(n^{2.807}) \]

Multiply 2 x 2 Matrices:
\[r = p_1 + p_2 - p_4 + p_6 \]
\[s = p_2 + p_5 \]
\[t = p_5 + p_7 \]
\[u = p_2 - p_3 + p_5 - p_7 \]

Aho, Hopcroft, Ullman 1974
Inversion Problem

- Let a_1, \ldots, a_n be a permutation of $1 \ldots n$
- (a_i, a_j) is an inversion if $i < j$ and $a_i > a_j$

- 4, 6, 1, 7, 3, 2, 5

- Problem: given a permutation, count the number of inversions
- This can be done easily in $O(n^2)$ time
 - Can we do better?

Application

- Counting inversions can be used to measure how close ranked preferences are
 - People rank 20 movies, based on their rankings you cluster people who like that same type of movie

Counting Inversions

\[
\begin{array}{cccccccccccc}
11 & 12 & 4 & 1 & 7 & 2 & 3 & 15 & 9 & 5 & 16 & 8 & 6 & 13 & 10 & 14
\end{array}
\]

Count inversions on lower half
Count inversions on upper half
Count the inversions between the halves

Count the Inversions

\[
\begin{array}{cccccccccccc}
11 & 12 & 4 & 1 & 7 & 2 & 3 & 15 & 9 & 5 & 16 & 8 & 6 & 13 & 10 & 14
\end{array}
\]

\[
\begin{array}{cccccccccccc}
11 & 12 & 4 & 1 & 7 & 2 & 3 & 15 & 9 & 5 & 16 & 8 & 6 & 13 & 10 & 14
\end{array}
\]

\[
\begin{array}{cccccccccccc}
11 & 12 & 4 & 1 & 7 & 2 & 3 & 15 & 9 & 5 & 16 & 8 & 6 & 13 & 10 & 14
\end{array}
\]

Problem – how do we count inversions between subproblems in $O(n)$ time?

- Solution – Count inversions while merging

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 7 & 11 & 12 & 15 & 5 & 6 & 8 & 9 & 10 & 13 & 14 & 16
\end{array}
\]

Standard merge algorithm – add to inversion count when an element is moved from the upper array to the solution

Use the merge algorithm to count inversions

\[
\begin{array}{cccc}
1 & 4 & 11 & 12 & 2 & 3 & 7 & 15
\end{array}
\]

Indicate the number of inversions for each element detected when merging

\[
\begin{array}{cccccccccccc}
5 & 8 & 9 & 16 & 6 & 10 & 13 & 14
\end{array}
\]
Inversions

- Counting inversions between two sorted lists
 - $O(1)$ per element to count inversions

![Example of inversions between two sorted lists]

- Algorithm summary
 - Satisfies the "Standard recurrence"
 - $T(n) = 2T(n/2) + cn$

Computing the Median

- Given n numbers, find the number of rank $n/2$
- One approach is sorting
 - Sort the elements, and choose the middle one
 - Can you do better?

Problem generalization

- *Selection*, given n numbers and an integer k, find the k-th largest

```
Select(A, k) {
    Choose element $x$ from $A$
    $S_1 = \{y \in A \mid y < x\}$
    $S_2 = \{y \in A \mid y > x\}$
    $S_3 = \{y \in A \mid y = x\}$
    if ($|S_2| \geq k$)
        return Select($S_2$, $k$)
    else if ($|S_2| + |S_3| \geq k$)
        return $x$
    else
        return Select($S_1$, $k - |S_2| - |S_3|$)
}
```

Randomized Selection

- Choose the element at random
- Analysis can show that the algorithm has expected run time $O(n)$

Deterministic Selection

- What is the run time of select if we can guarantee that choose finds an x such that $|S_1| < 3n/4$ and $|S_2| < 3n/4$ in $O(n)$ time
BFPRT Algorithm

- A very clever choose algorithm . . .

 Split into n/5 sets of size 5
 M be the set of medians of these sets
 Let x be the median of M

BFPRT runtime

|S_1| < 3n/4, |S_2| < 3n/4

 Split into n/5 sets of size 5
 M be the set of medians of these sets
 x be the median of M
 Construct S_1 and S_2
 Recursive call in S_1 or S_2

BFPRT Recurrence

- T(n) ≤ T(3n/4) + T(n/5) + cn

 Prove that T(n) ≤ 20 cn