
CSE 421

Algorithms

Richard Anderson

Lecture 12, Autumn 2019

Recurrences



Announcements

• Midterm,  Wednesday,  October 30

– Coverage through KT 5.5

– Old midterms posted



Shortest paths in directed 

graphs vs undirected graphs
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What about the minimum spanning 

tree of a directed graph?

• Must specify the root r

• Branching:  Out tree with root r
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Assume all vertices reachable from r Also called an arborescence



Finding a minimum branching
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Finding a minimum branching

• Remove all edges going into r

• Normalize the edge weights, so the 

minimum weight edge coming into each 

vertex has weight zero
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minimum branching



Finding a minimum branching

• Consider the graph that consists of the 

minimum cost edge coming in to each 

vertex

– If this graph is a branching, then it is the 

minimum cost branching

– Otherwise, the graph contains one or more 

cycles

• Collapse the cycles in the original graph to super 

vertices

• Reweight the graph and repeat the process



Finding a minimum branching
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Correctness Proof

• The lemma justifies using the 

edges of the cycle in the 

branching

• An induction argument is 

used to cover the multiple 

levels of compressing cycles

Lemma 4.38  Let C be a cycle in G consisting of edges of 

cost 0 with r not in C.  There is an optimal branching rooted 

at r that has exactly one edge entering C.
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Divide and Conquer

• Recurrences, Sections 5.1 and 5.2

• Algorithms

– Fast Matrix Multiplication

– Counting Inversions (5.3)

– Closest Pair (5.4)

– Multiplication (5.5)



Divide and Conquer

Array Mergesort(Array a){

n = a.Length;

if (n <= 1)

return a;

b = Mergesort(a[0 .. n/2]);

c = Mergesort(a[n/2+1 .. n-1]);

return Merge(b, c);

}



Algorithm Analysis

• Cost of Merge

• Cost of Mergesort



T(n) = 2T(n/2) + cn; T(1) = c;



Recurrence Analysis

• Solution methods

– Unrolling recurrence

– Guess and verify

– Plugging in to a “Master Theorem”



Unrolling the recurrence



Substitution

Prove T(n) <= cn (log2n + 1) for n >= 1

Induction:

Base Case:

Induction Hypothesis:



A better mergesort (?)

• Divide into 3 subarrays and recursively 

sort

• Apply 3-way merge

What is the recurrence?



Unroll recurrence for                  

T(n) = 3T(n/3) + dn



T(n) = aT(n/b) + f(n)



T(n) = T(n/2) + cn

Where does this recurrence arise?



Solving the recurrence exactly



T(n) = 4T(n/2) + n



T(n) = 2T(n/2) + n2



T(n) = 2T(n/2) + n1/2



Recurrences

• Three basic behaviors

– Dominated by initial case

– Dominated by base case

– All cases equal – we care about the depth


