CSE 421 Algorithms

Richard Anderson

Lecture 12, Autumn 2019

Recurrences

Announcements

- Midterm, Wednesday, October 30
- Coverage through KT 5.5
- Old midterms posted

Shortest paths in directed graphs vs undirected graphs

What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r

Assume all vertices reachable from r

Also called an arborescence

Finding a minimum branching

Finding a minimum branching

- Remove all edges going into r
- Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero

This does not change the edges of the minimum branching

Finding a minimum branching

- Consider the graph that consists of the minimum cost edge coming in to each vertex
- If this graph is a branching, then it is the minimum cost branching
- Otherwise, the graph contains one or more cycles
- Collapse the cycles in the original graph to super vertices
- Reweight the graph and repeat the process

Finding a minimum branching

Correctness Proof

Lemma 4.38 Let C be a cycle in G consisting of edges of cost 0 with r not in C . There is an optimal branching rooted at r that has exactly one edge entering C.

- The lemma justifies using the edges of the cycle in the branching
- An induction argument is used to cover the multiple levels of compressing cycles

Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
- Fast Matrix Multiplication
- Counting Inversions (5.3)
- Closest Pair (5.4)
- Multiplication (5.5)

Divide and Conquer

Array Mergesort(Array a)\{

$$
\begin{aligned}
& \mathrm{n}=\text { a.Length; } \\
& \text { if }(\mathrm{n}<=1)
\end{aligned}
$$

return a;
$\mathrm{b}=$ Mergesort(a[0 .. n/2]);
$\mathrm{c}=$ Mergesort(a[n/2+1 .. $\mathrm{n}-1])$;
return Merge(b, c);
\}

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

$\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn} ; \mathrm{T}(1)=\mathrm{c} ;$

Recurrence Analysis

- Solution methods
- Unrolling recurrence
- Guess and verify
- Plugging in to a "Master Theorem"

Unrolling the recurrence

Substitution

Prove $T(n)<=c n\left(\log _{2} n+1\right)$ for $n>=1$
Induction:
Base Case:

Induction Hypothesis:

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

Unroll recurrence for $T(n)=3 T(n / 3)+d n$

$T(n)=a T(n / b)+f(n)$

$T(n)=T(n / 2)+c n$

Where does this recurrence arise?

Solving the recurrence exactly

$T(n)=4 T(n / 2)+n$

$T(n)=2 T(n / 2)+n^{2}$

$T(n)=2 T(n / 2)+n^{1 / 2}$

Recurrences

- Three basic behaviors
- Dominated by initial case
- Dominated by base case
- All cases equal - we care about the depth

