CSE 421 Algorithms

Richard Anderson Lecture 12, Autumn 2019 Recurrences

Announcements

• Midterm, Wednesday, October 30

– Coverage through KT 5.5

– Old midterms posted

Shortest paths in directed graphs vs undirected graphs

What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r

Assume all vertices reachable from r

Also called an arborescence

- Remove all edges going into r
- Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero

This does not change the edges of the minimum branching

- Consider the graph that consists of the minimum cost edge coming in to each vertex
 - If this graph is a branching, then it is the minimum cost branching
 - Otherwise, the graph contains one or more cycles
 - Collapse the cycles in the original graph to super vertices
 - Reweight the graph and repeat the process

Correctness Proof

Lemma 4.38 Let C be a cycle in G consisting of edges of cost 0 with r not in C. There is an optimal branching rooted at r that has exactly one edge entering C.

- The lemma justifies using the edges of the cycle in the branching
- An induction argument is used to cover the multiple levels of compressing cycles

Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
 - Fast Matrix Multiplication
 - Counting Inversions (5.3)
 - Closest Pair (5.4)
 - Multiplication (5.5)

Divide and Conquer

Array Mergesort(Array a){ n = a.Length; if (n <= 1) return a; b = Mergesort(a[0 .. n/2]); c = Mergesort(a[n/2+1 .. n-1]); return Merge(b, c);

}

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

T(n) = 2T(n/2) + cn; T(1) = c;

Recurrence Analysis

- Solution methods
 - Unrolling recurrence
 - Guess and verify
 - Plugging in to a "Master Theorem"

Substitution

Prove $T(n) \le cn (log_2 n + 1)$ for $n \ge 1$

Induction: Base Case:

Induction Hypothesis:

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

What is the recurrence?

Unroll recurrence for T(n) = 3T(n/3) + dn

T(n) = aT(n/b) + f(n)

T(n) = T(n/2) + cn

Where does this recurrence arise?

Solving the recurrence exactly

T(n) = 4T(n/2) + n

$T(n) = 2T(n/2) + n^2$

$T(n) = 2T(n/2) + n^{1/2}$

Recurrences

- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - All cases equal we care about the depth