
CSE 421

Algorithms

Richard Anderson

Lecture 12, Autumn 2019

Recurrences

Announcements

• Midterm, Wednesday, October 30

– Coverage through KT 5.5

– Old midterms posted

Shortest paths in directed

graphs vs undirected graphs

a

b

c
s

e

g

f

d

4

2

1

2

1
5

4

2
3

3

6

3

7

4

a

b

c
s

e

g

f

d

4

2

1

2

1
5

4

2
3

3

6

3

7

4

What about the minimum spanning

tree of a directed graph?

• Must specify the root r

• Branching: Out tree with root r

a

b

c
s

e

g

f

d

4

2

1

2

1
5

4

2
3

3

6

3

7

4
a

b

c
s

e

g

f

d

4

2

1

2

1
5

4

2
3

3

6

3

7

4

Assume all vertices reachable from r Also called an arborescence

Finding a minimum branching

r

48

10 102

41

2 2

r

4

2

4

2 2

Finding a minimum branching

• Remove all edges going into r

• Normalize the edge weights, so the

minimum weight edge coming into each

vertex has weight zero

7

2 4

5

0 2

This does not change the edges of the

minimum branching

Finding a minimum branching

• Consider the graph that consists of the

minimum cost edge coming in to each

vertex

– If this graph is a branching, then it is the

minimum cost branching

– Otherwise, the graph contains one or more

cycles

• Collapse the cycles in the original graph to super

vertices

• Reweight the graph and repeat the process

Finding a minimum branching

r

48

10 102

41

2 2

rr

04

8 61

00

0 0

1

0

r

4

2

4

2 2

Correctness Proof

• The lemma justifies using the

edges of the cycle in the

branching

• An induction argument is

used to cover the multiple

levels of compressing cycles

Lemma 4.38 Let C be a cycle in G consisting of edges of

cost 0 with r not in C. There is an optimal branching rooted

at r that has exactly one edge entering C.

r

04

0 01

00

0 0

Divide and Conquer

• Recurrences, Sections 5.1 and 5.2

• Algorithms

– Fast Matrix Multiplication

– Counting Inversions (5.3)

– Closest Pair (5.4)

– Multiplication (5.5)

Divide and Conquer

Array Mergesort(Array a){

n = a.Length;

if (n <= 1)

return a;

b = Mergesort(a[0 .. n/2]);

c = Mergesort(a[n/2+1 .. n-1]);

return Merge(b, c);

}

Algorithm Analysis

• Cost of Merge

• Cost of Mergesort

T(n) = 2T(n/2) + cn; T(1) = c;

Recurrence Analysis

• Solution methods

– Unrolling recurrence

– Guess and verify

– Plugging in to a “Master Theorem”

Unrolling the recurrence

Substitution

Prove T(n) <= cn (log2n + 1) for n >= 1

Induction:

Base Case:

Induction Hypothesis:

A better mergesort (?)

• Divide into 3 subarrays and recursively

sort

• Apply 3-way merge

What is the recurrence?

Unroll recurrence for

T(n) = 3T(n/3) + dn

T(n) = aT(n/b) + f(n)

T(n) = T(n/2) + cn

Where does this recurrence arise?

Solving the recurrence exactly

T(n) = 4T(n/2) + n

T(n) = 2T(n/2) + n2

T(n) = 2T(n/2) + n1/2

Recurrences

• Three basic behaviors

– Dominated by initial case

– Dominated by base case

– All cases equal – we care about the depth

