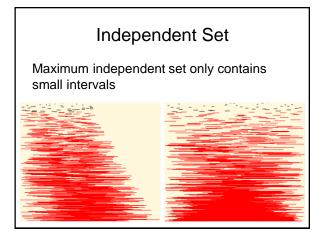
CSE 421 Algorithms

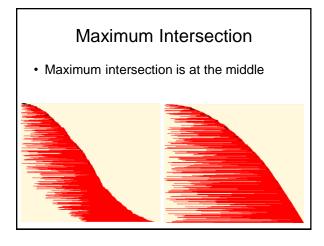
Autumn 2019 Lecture 11 Minimum Spanning Trees (Part II)

Interval Scheduling

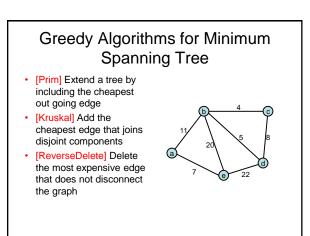
- What is the expected size of the maximum independent set for random intervals
- What is the expected size of the maximum intersection for random intervals

Method 1: Each interval assigned a random start position and random length from [0,1] Method 2: Random permutation of interval endpoints



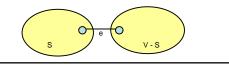


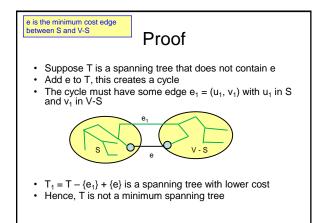




Edge inclusion lemma

- Let S be a subset of V, and suppose e = (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
 Or equivalently, if e is not in T, then T is not a minimum spanning tree





Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST
- Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.

Prim's Algorithm

S = { }; T = { }; while S != V choose the minimum cost edge e = (u,v), with u in S, and v in V-S add e to T add v to S

Prove Prim's algorithm computes an MST

• Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

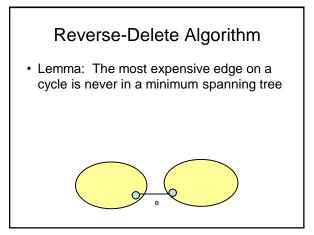
 $\begin{array}{l} \mbox{Let } C = \{\{v_1\}, \, \{v_2\}, \, \ldots, \, \{v_n\}\}; \ \ T = \{ \ \} \\ \\ \mbox{while } |C| > 1 \\ \\ \mbox{Let } e = (u, \, v) \ \mbox{with } u \ \mbox{in } C_i \ \mbox{and } v \ \mbox{in } C_j \ \mbox{be the } \\ \\ \\ \mbox{minimum cost edge joining distinct sets in } C \end{array}$

Replace C_i and C_j by $C_i \cup C_j$

Add e to T

Prove Kruskal's algorithm computes an MST

• Show an edge e is in the MST when it is added to T



Reverse-Delete Algorithm

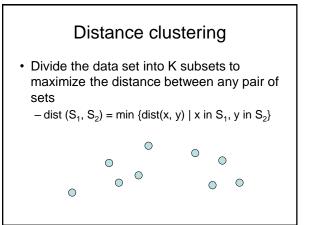
- Let e be the max cost edge whose removal does not disconnect the graph
- Let T be a spanning tree of G=(V, E {e})

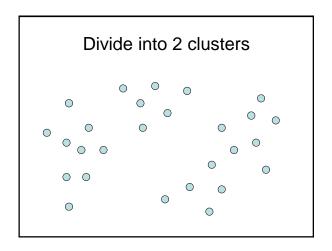
Dealing with the assumption of no equal weight edges

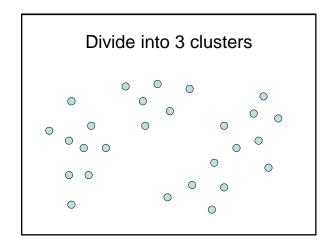
- · Force the edge weights to be distinct
 - Add small quantities to the weights
 - Give a tie breaking rule for equal weight edges

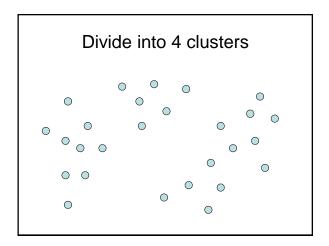
Application: Clustering • Given a collection of points in an rdimensional space and an integer K, divide the points into K sets that are closest together

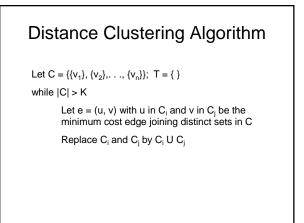
 \bigcirc

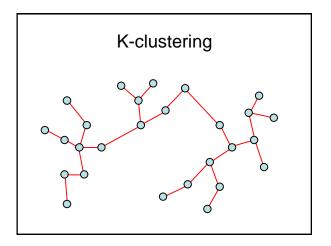


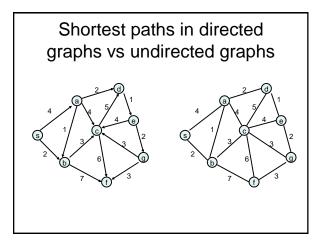


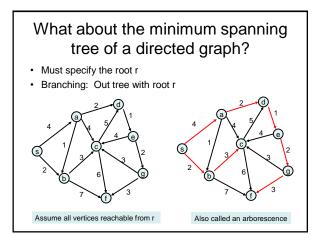


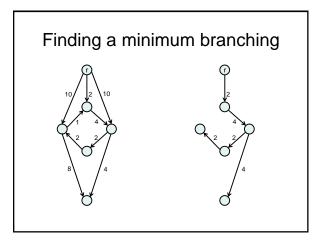


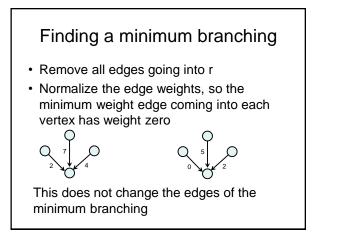


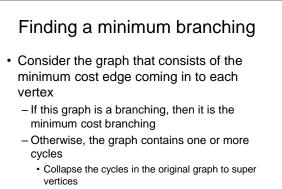












Reweight the graph and repeat the process

