CSE 421
Algorithms

Autumn 2019
Lecture 11
Minimum Spanning Trees (Part II)
Interval Scheduling

• What is the expected size of the maximum independent set for random intervals
• What is the expected size of the maximum intersection for random intervals

Method 1: Each interval assigned a random start position and random length from [0,1]

Method 2: Random permutation of interval endpoints
Independent Set

Maximum independent set only contains small intervals
Maximum Intersection

- Maximum intersection is at the middle
Minimum Spanning Tree

Undirected Graph $G=(V,E)$ with edge weights

For simplicity, assume all edge costs are distinct
Greedy Algorithms for Minimum Spanning Tree

- **[Prim]** Extend a tree by including the cheapest outgoing edge
- **[Kruskal]** Add the cheapest edge that joins disjoint components
- **[ReverseDelete]** Delete the most expensive edge that does not disconnect the graph

![Graph Image]
Edge inclusion lemma

• Let S be a subset of V, and suppose $e = (u, v)$ is the minimum cost edge of E, with u in S and v in $V-S$

• e is in every minimum spanning tree of G
 – Or equivalently, if e is not in T, then T is not a minimum spanning tree
Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $e_1 = (u_1, v_1)$ with u_1 in S and v_1 in V-S

$T_1 = T - \{e_1\} + \{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree
Optimality Proofs

• Prim’s Algorithm computes a MST
• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.
Prim’s Algorithm

\[S = \{ \} ; \quad T = \{ \} ; \]

\textbf{while} \ S \neq \ V

\begin{align*}
\text{choose the minimum cost edge} \\
e = (u,v), \text{ with } u \text{ in } S, \text{ and } v \text{ in } V-S \\
\text{add } e \text{ to } T \\
\text{add } v \text{ to } S
\end{align*}
Prove Prim’s algorithm computes an MST

- Show an edge e is in the MST when it is added to T
Kruskal’s Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}; \quad T = \{\}$

while $|C| > 1$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$

Add e to T
Prove Kruskal’s algorithm computes an MST

• Show an edge e is in the MST when it is added to T
Reverse-Delete Algorithm

• Lemma: The most expensive edge on a cycle is never in a minimum spanning tree
Reverse-Delete Algorithm

- Let e be the max cost edge whose removal does not disconnect the graph.
- Let T be a spanning tree of $G=(V, E – \{e\})$.
Dealing with the assumption of no equal weight edges

• Force the edge weights to be distinct
 – Add small quantities to the weights
 – Give a tie breaking rule for equal weight edges
Application: Clustering

• Given a collection of points in an r-dimensional space and an integer K, divide the points into K sets that are closest together
Distance clustering

• Divide the data set into K subsets to maximize the distance between any pair of sets

 $\text{dist} (S_1, S_2) = \min \{\text{dist}(x, y) \mid x \in S_1, y \in S_2\}$
Divide into 2 clusters
Divide into 3 clusters
Divide into 4 clusters
Distance Clustering Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}; \ T = \{\}$

while $|C| > K$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$
K-clustering
Shortest paths in directed graphs vs undirected graphs
What about the minimum spanning tree of a directed graph?

- Must specify the root \(r \)
- Branching: Out tree with root \(r \)

Assume all vertices reachable from \(r \)

Also called an arborescence
Finding a minimum branching
Finding a minimum branching

- Remove all edges going into r
- Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero

This does not change the edges of the minimum branching
Finding a minimum branching

- Consider the graph that consists of the minimum cost edge coming in to each vertex
 - If this graph is a branching, then it is the minimum cost branching
 - Otherwise, the graph contains one or more cycles
 - Collapse the cycles in the original graph to super vertices
 - Reweight the graph and repeat the process
Finding a minimum branching
Correctness Proof

Lemma 4.38 Let C be a cycle in G consisting of edges of cost 0 with r not in C. There is an optimal branching rooted at r that has exactly one edge entering C.

- The lemma justifies using the edges of the cycle in the branching
- An induction argument is used to cover the multiple levels of compressing cycles