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CSE 421

Algorithms

Autumn 2019

Lecture 10

Minimum Spanning Trees

Dijkstra’s Algorithm

Implementation and Runtime
S = { };    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))
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Edge costs are assumed to be non-negative
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HEAP OPERATIONS

n Extract Mins

m Heap Updates

Run Time

• Basic Heap Implementation

– O(log n) extract min and update key

– O((m + n) log n) run time

• Fancy data structures: Fibonacci Heaps

– O(m + n log n)

• Dense graphs

– O(n2)

Shortest Paths

• Negative Cost Edges

– Dijkstra’s algorithm assumes positive cost edges

– For some applications, negative cost edges make 

sense

– Shortest path not well defined if a graph has a 

negative cost cycle
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Negative Cost Edge Preview

• Topological Sort can be used for solving 

the shortest path problem in directed 

acyclic graphs

• Bellman-Ford algorithm finds shortest 

paths in a graph with negative cost edges 

(or reports the existence of a negative cost 

cycle).

Bottleneck Shortest Path

• Define the bottleneck distance for a path 

to be the maximum cost edge along the 

path
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Compute the bottleneck shortest 

paths
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Dijkstra’s Algorithm

for Bottleneck Shortest Paths

S = { };    d[s] = negative infinity;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], max(d[v], c(v, w)))
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Minimum Spanning Tree

• Introduce Problem

• Demonstrate three different greedy 

algorithms

• Provide proofs that the algorithms work

Minimum Spanning Tree
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Greedy Algorithms for Minimum 

Spanning Tree

• Extend a tree by 
including the 
cheapest out going 
edge

• Add the cheapest 
edge that joins 
disjoint components

• Delete the most 
expensive edge that 
does not disconnect 
the graph
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Greedy Algorithm 1

Prim’s Algorithm

• Extend a tree by including the cheapest 

out going edge
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Construct the MST 

with Prim’s 

algorithm starting 

from vertex a

Label the edges in 

order of insertion
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Greedy Algorithm 2

Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint 

components
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Construct the MST 

with Kruskal’s 

algorithm

Label the edges in 

order of insertion

Greedy Algorithm 3

Reverse-Delete Algorithm

• Delete the most expensive edge that does 

not disconnect the graph
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Construct the MST 

with the reverse-

delete algorithm

Label the edges in 

order of removal

Dijkstra’s Algorithm

for Minimum Spanning Trees

S = { };    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], c(v, w))
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Minimum Spanning Tree
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Undirected Graph 

G=(V,E) with edge 

weights

Greedy Algorithms for Minimum 

Spanning Tree

• [Prim] Extend a tree by 

including the cheapest 

out going edge

• [Kruskal] Add the 

cheapest edge that joins 

disjoint components

• [ReverseDelete] Delete 

the most expensive edge 

that does not disconnect 

the graph
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Why do the greedy algorithms 

work?

• For simplicity, assume all edge costs are 

distinct
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Edge inclusion lemma

• Let S be a subset of V, and suppose e = 

(u, v) is the minimum cost edge of E, with 

u in S and v in V-S

• e is in every minimum spanning tree of G

– Or equivalently, if e is not in T, then T is not a 

minimum spanning tree

S V - S

e

Proof 

• Suppose T is a spanning tree that does not contain e

• Add e to T, this creates a cycle

• The cycle must have some edge e1 = (u1, v1) with u1 in S 
and v1 in V-S

• T1 = T – {e1} + {e} is a spanning tree with lower cost

• Hence, T is not a minimum spanning tree

S V - S
e

e is the minimum cost edge 

between S and V-S


