CSE 421 Algorithms

Autumn 2019 Lecture 10 Minimum Spanning Trees

Run Time

- Basic Heap Implementation
 - $-O(\log n)$ extract min and update key
 - $-O((m + n) \log n)$ run time
- Fancy data structures: Fibonacci Heaps – O(m + n log n)
- Dense graphs - O(n²)

Shortest Paths

- Negative Cost Edges
 - Dijkstra's algorithm assumes positive cost edges
 - For some applications, negative cost edges make sense
 - Shortest path not well defined if a graph has a negative cost cycle

Negative Cost Edge Preview

- Topological Sort can be used for solving the shortest path problem in directed acyclic graphs
- Bellman-Ford algorithm finds shortest paths in a graph with negative cost edges (or reports the existence of a negative cost cycle).

Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Why do the greedy algorithms work?

 For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V, and suppose e = (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
 Or equivalently, if e is not in T, then T is not a minimum spanning tree

