
1

CSE 421

Algorithms

Autumn 2019

Lecture 10

Minimum Spanning Trees

Dijkstra’s Algorithm

Implementation and Runtime
S = { }; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))

s

u

v

z

y

x

Edge costs are assumed to be non-negative

a

b

HEAP OPERATIONS

n Extract Mins

m Heap Updates

Run Time

• Basic Heap Implementation

– O(log n) extract min and update key

– O((m + n) log n) run time

• Fancy data structures: Fibonacci Heaps

– O(m + n log n)

• Dense graphs

– O(n2)

Shortest Paths

• Negative Cost Edges

– Dijkstra’s algorithm assumes positive cost edges

– For some applications, negative cost edges make

sense

– Shortest path not well defined if a graph has a

negative cost cycle
a

b

c
s

e

g

f

4

2

-3

6

4

-2
3

4

6

3

7

-4

Negative Cost Edge Preview

• Topological Sort can be used for solving

the shortest path problem in directed

acyclic graphs

• Bellman-Ford algorithm finds shortest

paths in a graph with negative cost edges

(or reports the existence of a negative cost

cycle).

Bottleneck Shortest Path

• Define the bottleneck distance for a path

to be the maximum cost edge along the

path

s

v

x

u
5 4

6

3 5

4

2

Compute the bottleneck shortest

paths

a

b

c
s

e

g

f

d

4

2

-3

6

6
5

4

-2
3

7

5

3

7

4
a

b

c
s

e

g

f

d

Dijkstra’s Algorithm

for Bottleneck Shortest Paths

S = { }; d[s] = negative infinity; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], max(d[v], c(v, w)))

s

u

v

z

y

x

a

b

4

1

1

1

2

2
3

3

3
4

4

5

Minimum Spanning Tree

• Introduce Problem

• Demonstrate three different greedy

algorithms

• Provide proofs that the algorithms work

Minimum Spanning Tree

a

b

c
s

e

g

f

9

2

13

6

4

11
5

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3

Greedy Algorithms for Minimum

Spanning Tree

• Extend a tree by
including the
cheapest out going
edge

• Add the cheapest
edge that joins
disjoint components

• Delete the most
expensive edge that
does not disconnect
the graph

4

115

7

20

8

22

a

b c

d

e

Greedy Algorithm 1

Prim’s Algorithm

• Extend a tree by including the cheapest

out going edge

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e

c

g

f
b

s

u

v

Construct the MST

with Prim’s

algorithm starting

from vertex a

Label the edges in

order of insertion

3

Greedy Algorithm 2

Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint

components

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e

c

g

f
b

s

u

v

Construct the MST

with Kruskal’s

algorithm

Label the edges in

order of insertion

Greedy Algorithm 3

Reverse-Delete Algorithm

• Delete the most expensive edge that does

not disconnect the graph

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e

c

g

f
b

s

u

v

Construct the MST

with the reverse-

delete algorithm

Label the edges in

order of removal

Dijkstra’s Algorithm

for Minimum Spanning Trees

S = { }; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], c(v, w))

s

u

v

z

y

x

a

b

4

1

1

1

2

2
3

3

3
4

4

5

Minimum Spanning Tree

a

b

c
s

e

g

f

9

2

13

6

4

11
5

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3

Undirected Graph

G=(V,E) with edge

weights

Greedy Algorithms for Minimum

Spanning Tree

• [Prim] Extend a tree by

including the cheapest

out going edge

• [Kruskal] Add the

cheapest edge that joins

disjoint components

• [ReverseDelete] Delete

the most expensive edge

that does not disconnect

the graph

4

115

7

20

8

22

a

b c

d

e

Why do the greedy algorithms

work?

• For simplicity, assume all edge costs are

distinct

4

Edge inclusion lemma

• Let S be a subset of V, and suppose e =

(u, v) is the minimum cost edge of E, with

u in S and v in V-S

• e is in every minimum spanning tree of G

– Or equivalently, if e is not in T, then T is not a

minimum spanning tree

S V - S

e

Proof

• Suppose T is a spanning tree that does not contain e

• Add e to T, this creates a cycle

• The cycle must have some edge e1 = (u1, v1) with u1 in S
and v1 in V-S

• T1 = T – {e1} + {e} is a spanning tree with lower cost

• Hence, T is not a minimum spanning tree

S V - S
e

e is the minimum cost edge

between S and V-S

