CSE 421 Algorithms

Autumn 2019 Lecture 9 Dijkstra's algorithm

Last Week – Greedy Algorithms

- Task scheduling to minimize maximum lateness
 - Interchange lemma

- Farthest in the future algorithm for optimal caching
 - Discard element whose first occurrence is last in the sequence

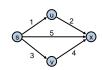
A, B, C, A, C, D, C, B, C, A, D

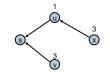
This week

- Topics
 - Dijkstra's Algorithm (Section 4.4)
 - Wednesday: Shortest Paths / Minimum Spanning Trees
 - Friday: Minimum Spanning Trees
- Reading
 - **-4.4, 4.5, 4.7, 4.8**

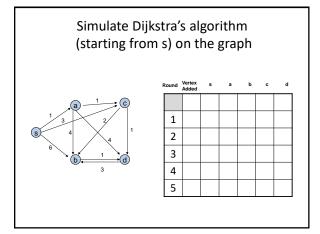
Single Source Shortest Path Problem

- · Given a graph and a start vertex s
 - Determine distance of every vertex from s
 - Identify shortest paths to each vertex
 - Express concisely as a "shortest paths tree"
 - Each vertex has a pointer to a predecessor on shortest path





Warmup If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t WHY?



Who was Dijkstra?

· What were his major contributions?

http://www.cs.utexas.edu/users/EWD/

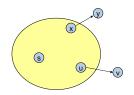
- Edsger Wybe Dijkstra was one of the most influential members of computing science's founding generation. Among the domains in which his scientific contributions are fundamental are
 - algorithm design
 - programming languages
 - program design
 - operating systems
 - distributed processing
 - $\boldsymbol{-}$ formal specification and verification
 - design of mathematical arguments

Dijkstra's Algorithm as a greedy algorithm

• Elements committed to the solution by order of minimum distance

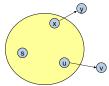
Correctness Proof

- Elements in S have the correct label
- Key to proof: when v is added to S, it has the correct distance label.



Proof

- Let v be a vertex in V-S with minimum d[v]
- Let P_v be a path of length d[v], with an edge (u,v)
- Let P be some other path to v. Suppose P first leaves S on the edge (x, y)
 - $-P = P_{sx} + c(x,y) + P_{yy}$
 - $\operatorname{Len}(P_{sx}) + c(x,y) >= d[y]$
 - $Len(P_{vv}) >= 0$
 - Len(P) >= d[y] + 0 >= d[v]



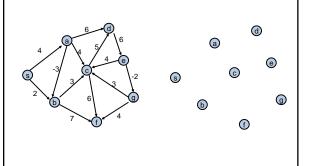
Negative Cost Edges

 Draw a small example a negative cost edge and show that Dijkstra's algorithm fails on this example

Bottleneck Shortest Path

• Define the bottleneck distance for a path to be the maximum cost edge along the path

Compute the bottleneck shortest paths



How do you adapt Dijkstra's algorithm to handle bottleneck distances

• Does the correctness proof still apply?