

CSE 421 Algorithms

Richard Anderson Autumn 2019 Lecture 8 - Greedy Algorithms II

Announcements

- Today's lecture
 - Kleinberg-Tardos, 4.2, 4.3
- Next week
 - Kleinberg-Tardos, 4.4, 4.5

Scheduling Intervals

- · Given a set of intervals
 - What is the largest set of non-overlapping intervals
 - What is the minimum number of processors required to schedule all intervals
- Suppose the n intervals are "random"
 - What is the expected number of independent intervals
 - What is the expected depth

Generating a random set of intervals

- Method 1:
 - Each interval assigned random start position in [0.0, 1.0]
 - Each interval assigned a random length in [0.0, 1.0]
- · Method 2:
 - Start with the array [1, 1, 2, 2, 3, 3, 4, 4, 5, 5]
 - Randomly permute it [2, 1, 4, 2, 3, 4, 5, 1, 3, 5]
 - Index of the first j is the start of interval j, and the index of the second j is the end of interval j

3

Greedy Algorithms

- · Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Today's problems (Sections 4.2, 4.3)
 - Homework Scheduling
 - Optimal Caching
 - Subsequence testing

Homework Scheduling

- · Tasks to perform
- · Deadlines on the tasks
- · Freedom to schedule tasks in any order
- Can I get all my work turned in on time?
- · If I can't get everything in, I want to minimize the maximum lateness

Scheduling tasks

- Each task has a length t_i and a deadline d_i
- · All tasks are available at the start
- · One task may be worked on at a time
- · All tasks must be completed
- Goal minimize maximum lateness
 Lateness: L_i = f_i d_i if f_i >= d_i

Example
Time Deadline

a₁ 2 2
a₂ 3 4

2 1 3 Lateness 1

7

Determine the minimum lateness

Time Deadline

a₁ 2 6

a₂ 3 4

a₃ 4 5

a₄ 5

Deadline

Greedy Algorithm

- · Earliest deadline first
- · Order jobs by deadline
- · This algorithm is optimal

9

10

Analysis

- Suppose the jobs are ordered by deadlines, $d_1 \le d_2 \le \ldots \le d_n$
- A schedule has an *inversion* if job j is scheduled before i where j > i
- The schedule A computed by the greedy algorithm has no inversions.
- Let O be the optimal schedule, we want to show that A has the same maximum lateness as O

Lemma: There is an optimal schedule with no idle time

- It doesn't hurt to start your homework early!
- · Note on proof techniques
 - This type of can be important for keeping proofs clean
 - It allows us to make a simplifying assumption for the remainder of the proof

Lemma

 If there is an inversion i, j, there is a pair of adjacent jobs i', j' which form an inversion

13

14

Interchange argument

 Suppose there is a pair of jobs i and j, with d_i <= d_j, and j scheduled immediately before i. Interchanging i and j does not increase the maximum lateness.

Proof by Bubble Sort

Determine maximum lateness

15

16

Real Proof

- There is an optimal schedule with no inversions and no idle time.
- Let O be an optimal schedule k inversions, we construct a new optimal schedule with k-1 inversions
- Repeat until we have an optimal schedule with 0 inversions
- This is the solution found by the earliest deadline first algorithm

Result

 Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Homework Scheduling

· How is the model unrealistic?

Extensions

- What if the objective is to minimize the sum of the lateness?
 - EDF does not work
- If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
- What about the case with release times and deadlines where tasks are preemptable?

19

20

22

Optimal Caching

- · Caching problem:
 - Maintain collection of items in local memory
 - Minimize number of items fetched

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

21

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note it is rare to know what the requests are in advance – but we still might want to do this:
 - Some specific applications, the sequence is known
 - · Register allocation in code generation
 - Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm

· Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D

23 24

Correctness Proof

- Sketch
- · Start with Optimal Solution O
- Convert to Farthest in the Future Solution
- Look at the first place where they differ
- · Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .

Subsequence Testing

• Is $a_1a_2...a_m$ a subsequence of $b_1b_2...b_n$? - e.g. is T,R,E,E a subsequence of S,T,U,A,R,T,R,E,G,E,S

T R E E

25 26

Next week

