CSE 421
Algorithms
Richard Anderson
Autumn 2019
Lecture 8 – Greedy Algorithms II
Announcements

• Today’s lecture
 – Kleinberg-Tardos, 4.2, 4.3

• Next week
 – Kleinberg-Tardos, 4.4, 4.5
Scheduling Intervals

• Given a set of intervals
 – What is the largest set of non-overlapping intervals
 – What is the minimum number of processors required to schedule all intervals

• Suppose the n intervals are “random”
 – What is the expected number of independent intervals
 – What is the expected depth
Generating a random set of intervals

• Method 1:
 – Each interval assigned random start position in [0.0, 1.0]
 – Each interval assigned a random length in [0.0, 1.0]

• Method 2:
 – Start with the array [1, 1, 2, 2, 3, 3, 4, 4, 5, 5]
 – Randomly permute it [2, 1, 4, 2, 3, 4, 5, 1, 3, 5]
 – Index of the first j is the start of interval j, and the index of the second j is the end of interval j
Greedy Algorithms

• Solve problems with the simplest possible algorithm
• The hard part: showing that something simple actually works
• Today’s problems (Sections 4.2, 4.3)
 – Homework Scheduling
 – Optimal Caching
 – Subsequence testing
Homework Scheduling

- Tasks to perform
- Deadlines on the tasks
- Freedom to schedule tasks in any order

- Can I get all my work turned in on time?
- If I can’t get everything in, I want to minimize the maximum lateness
Scheduling tasks

• Each task has a length t_i and a deadline d_i
• All tasks are available at the start
• One task may be worked on at a time
• All tasks must be completed

• Goal minimize maximum lateness
 – Lateness: $L_i = f_i - d_i$ if $f_i \geq d_i$
Example

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
<th>Lateness 1</th>
<th>Lateness 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>a₂</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

```markdown
<table>
<thead>
<tr>
<th></th>
<th>a₁</th>
<th>a₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
```
Determine the minimum lateness

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>2</td>
</tr>
<tr>
<td>a₂</td>
<td>3</td>
</tr>
<tr>
<td>a₃</td>
<td>4</td>
</tr>
<tr>
<td>a₄</td>
<td>5</td>
</tr>
</tbody>
</table>
Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal
Analysis

• Suppose the jobs are ordered by deadlines, \(d_1 \leq d_2 \leq \ldots \leq d_n \)

• A schedule has an *inversion* if job \(j \) is scheduled before \(i \) where \(j > i \)

• The schedule \(A \) computed by the greedy algorithm has no inversions.

• Let \(O \) be the optimal schedule, we want to show that \(A \) has the same maximum lateness as \(O \)
List the inversions

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>3</td>
</tr>
<tr>
<td>a₂</td>
<td>4</td>
</tr>
<tr>
<td>a₃</td>
<td>2</td>
</tr>
<tr>
<td>a₄</td>
<td>5</td>
</tr>
</tbody>
</table>
Lemma: There is an optimal schedule with no idle time

- It doesn’t hurt to start your homework early!

- Note on proof techniques
 - This type of can be important for keeping proofs clean
 - It allows us to make a simplifying assumption for the remainder of the proof
Lemma

• If there is an inversion i, j, there is a pair of adjacent jobs i', j' which form an inversion
Interchange argument

• Suppose there is a pair of jobs i and j, with $d_i \leq d_j$, and j scheduled immediately before i. Interchanging i and j does not increase the maximum lateness.
Proof by Bubble Sort

Determine maximum lateness
Real Proof

• There is an optimal schedule with no inversions and no idle time.
• Let O be an optimal schedule k inversions, we construct a new optimal schedule with k-1 inversions
• Repeat until we have an optimal schedule with 0 inversions
• This is the solution found by the earliest deadline first algorithm
Result

• Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness
Homework Scheduling

• How is the model unrealistic?
Extensions

• What if the objective is to minimize the sum of the lateness?
 – EDF does not work

• If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete

• What about the case with release times and deadlines where tasks are preemptable?
Optimal Caching

• Caching problem:
 – Maintain collection of items in local memory
 – Minimize number of items fetched
Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A
Optimal Caching

• If you know the sequence of requests, what is the optimal replacement pattern?
• Note – it is rare to know what the requests are in advance – but we still might want to do this:
 – Some specific applications, the sequence is known
 • Register allocation in code generation
 – Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm
Farthest in the future algorithm

• Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D
Correctness Proof

• Sketch
• Start with Optimal Solution O
• Convert to Farthest in the Future Solution F-F
• Look at the first place where they differ
• Convert O to evict F-F element
 – There are some technicalities here to ensure the caches have the same configuration . . .
Subsequence Testing

- Is $a_1 a_2 \ldots a_m$ a subsequence of $b_1 b_2 \ldots b_n$?
 - e.g. is T,R,E,E a subsequence of S,T,U,A,R,T,R,E,G,E,S

```
T R E E
```

```
S T U A R T R E G E S
```
Next week